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Abstract 

An extended Kaiman filter (EKF) is used to combine the information obtained from a Global 

Positioning System (GPS) receiver and an Inertial Navigation System (INS) to provide a naviga- 

tion solution. This research compares the results of an actual tightly-coupled GPS/INS integrated 

system with those obtained in computer simulation. Differences between the simulation and actual 

hardware results, such as navigation solutions and tuning values, are shown in the research. An 

analysis of various GPS models was studied to determine the best representation for a system truth 

model . Measurement updates and their effects upon position accuracies was considered and pre- 

liminary research was conducted to determine when a feedback implementation was advantageous 

over a feedforward approach. The results suggest that the computer simulations being used at the 

Air Force Institute of Technology (AFIT) produce better navigation solutions than are actually 

possible with real hardware. Alternate system truth models were found which would estimate the 

errors of an actual system more accurately with less computational loading. 

xn 



THE DESIGN AND ANALYSIS OF INTEGRATED NAVIGATION SYSTEMS 

USING REAL INS AND GPS DATA 

/.   Introduction 

The United States Air Force (USAF) currently employs a multitude of navigation systems 

in its arsenal of weapons. The technological advances of many onboard systems now require more 

accurate positioning data, which has led the USAF in a continuing search for better navigation 

solutions. This research focuses on the integration of the Inertial Navigation System (INS) and the 

Global Positioning System (GPS). The INS has become a standard aircraft navigation tool due to 

immunity to jamming and relatively accurate positioning. The Global Positioning System is rapidly 

growing in popularity in navigation systems, and the USAF has committed itself to installing GPS 

systems in all of its aircraft. The main objective of integrating these two systems is to combine 

position estimates from each system and produce an even more accurate navigational solution. 

This thesis is a natural progression in the study of integrated navigation systems at the 

Air Force Institute of Technology (AFIT) (10, 11, 18, 20, 22, 27). The goal of this research is 

to verify the models and methods used by AFIT in past studies by comparing simulation results 

to the position estimates of actual tightly-coupled integrated navigation systems. Section 1.2.5.1 

discusses the tightly-coupled approach in GPS/INS integrated navigation systems. The navigation 

systems integrated in this thesis are NAVSTAR XR-4PC and XR-5PC Global Positioning System 

Receivers and a Litton LN-94 Inertial Navigation System. The research has been sponsored by the 

Avionics Laboratory, Wright Patterson AFB, OH. 

In the not too distant future, the AFIT Navigation Section hopes to develop a mobile 

GPS/INS laboratory. Although this thesis pertains only to stationary platforms in a post-processing 
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environment, the results will provide the groundwork for the development of a real-time GPS/INS 

integrated system on a moving vehicle. 

1.1    Background 

AFIT navigation research has covered a myriad of subjects concerning the integration of 

navigation systems; the vast majority of these theses were done in simulation (10, 18, 20, 22, 27). 

The research began with the generation of computer models for the INS, GPS, and Range/Range- 

Rate System (RRS) (22). These models were primarily used in theses supporting the navigation 

reference systems utilized by the Central Inertial Guidance Test Facility (CIGTF) at Holloman 

AFB, NM. AFIT selected the extended Kaiman filter (EKF) method in most research efforts to 

combine the navigation information. These investigations delved into the performance of various 

navigation systems, as well as several different methods of failure detection, isolation, and recovery 

(10, 18, 27). The computer simulation models and methods from past theses are used as a basis for 

this research. The Multimode Simulation for Optimal Filter Evaluation (MSOFE) models used in 

past AFIT research has incorporated GPS satellite pseudorange, Range/Range-Rate transponder, 

barometric altimeter, and Doppler radar measurements (10, 18, 3, 20, 27). This thesis will extract 

the INS/GPS portions of these system truth and filter models and employ only GPS pseudoranges 

for measurements. Pseudoranges, pseudorange-rates, and carrier-phase measurements are available 

from the laboratory equipment. In order to limit the scope of the research, only pseudorange 

measurements were used in this initial attempt of a GPS/INS hardware integration at AFIT. 

Nearly all AFIT navigation research has been conducted in simulation only. One notable 

exception was an attempt in 1990 to accomplish a hardware integration of a Collins 3A GPS 

receiver and an LN-94 INS (11). The information necessary to integrate the two systems in a 

tightly-coupled manner was not readily available from the communications port of the Collins 3A 

receiver.   To this researcher's advantage, the XR-4PC and XR-5PC have the pseudorange and 
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satellite ephemeris data readily accessible. The benefits of raw data access will be discussed in the 

Literature Review. 

1.2   Literature Review 

1.2.1 Navigation. This section provides background information on the individual subsys- 

tems and the reasoning supporting their selection for integration in the EKF. Navigation is defined 

as the determination of a physical body's position and velocity relative to some reference frame (1). 

The INS, GPS, and EKF are the primary components in this integrated navigation research. The 

outputs of the INS and GPS are combined in an extended Kaiman filter to provide the navigation 

solution. In order to understand the integration design process fully, the operation of each of these 

subsystems will be discussed in the ensuing sections. 

1.2.2 Inertial Navigation System. The inertial navigation system (INS) utilizes gyro- 

scopes and accelerometers mounted aboard the vehicle to execute the navigation function. An 

appropriately initialized inertial navigation system is capable of continuous determination of ve- 

hicle position and velocity without the use of external radiation or optical information. The INS 

contains gyroscopes which compute or maintain the reference coordinate frame, and accelerometers 

which measure specific force. Specific force is the measurement of acceleration minus the gravity 

vector. In order for the specific force to be computed accurately, the gravity vector must be modeled 

properly. By separating the effects of gravity, the vehicle accelerations can be precisely determined. 

The inertial navigation unit integrates the acceleration twice to obtain position measurements. All 

inertial navigation systems perform the following functions: instrument or compute a reference 

frame, measure specific force, have knowledge of the gravitational field, and integrate the specific 

force data in time to obtain velocity and position information (1). 

The inertial navigation system to be used in this thesis research is a Litton LN-94 ring 

laser gyro strapdown system.   The maximum drift for the LN-94 is approximately one nautical 
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mile per hour circular error probability (CEP). The LN-94 transmits/receives information over the 

1553 data bus (5). The LN-94 utilizes six different reference frames: earth-centered earth-fixed 

(ECEF), navigation, true, computer, platform, and body (8). Since the gyros and accelerometers 

are physically mounted to the frame of the aircraft, the measurements are taken in the body frame. 

The INS integrates the specific force measurements and converts the results into the navigation 

frame. The truth model used in simulation is a derivation of the Litton 93-state model given in the 

LN-93 error budget (8). The LN-93 and LN-94 are internally the same guidance system, the only 

difference being the packaging of the individual units. Therefore, the truth model applies to both 

inertial navigation units. 

1.2.3 Global Positioning System. The Global Positioning System provides three-dimensional 

position and velocity data to users anywhere in the world. The GPS system consists of three seg- 

ments: space, control, and user. The space segment is made up of 24 satellites in six orbital planes 

which receive information from the control segment and transmit satellite orbital information to 

the user segment. This particular constellation of satellites is configured so that a user has at least 

four satellites visible anywhere in the world at any time with only a few brief outages at remote 

locations. The control segment monitors satellites and performs updates when necessary. These 

updates include clock corrections, new ephemerides, and command telemetry (2). The user equip- 

ment must receive signals from at least four different satellites in order to provide three-dimensional 

position and velocity data to the user. The computer simulation uses four satellites placed in orbit 

to produce a desired geometry. When collecting data for the hardware integration, all satellites in 

view will be used for measurements. All satellites in view will be used in order to provide the best 

possible Geometric Dilution Of Precision, GDOP. 

The pseudoranges and ECEF satellite positions are the primary GPS sensor measurements 

used in the extended Kaiman filtering algorithm. Pseudorange is the time shift required to line up 

a replica of the code generated in the receiver with the received code from the satellite, multiplied 
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by the speed of light. Ideally, the time shift is the difference between the time of signal reception 

(measured in the receiver time frame) and the time of emission (measured in the satellite time 

frame) (2). These two time frames are different, which introduces a bias into the measurement. 

These biased time delay measurements are thus referred to as pseudoranges. 

The integrated navigation system concentrates mainly on the user segment. The GPS 

user equipment is comprised of four principal components: antenna, receiver, computer, and in- 

put/output devices (2). The user equipment used in this thesis will be the NAVSTAR XR-5PC and 

XR-4PC GPS receivers. These receivers are capable of providing raw data, such as pseudorange, 

delta-pseudorange, and ephemeris data, as well as the GPS receiver's Kaiman filter-computed user 

position in the navigation frame. Both receivers are capable of receiving the unclassified GPS code 

only; therefore, selective availability is a factor in determining range accuracies. Selective availabil- 

ity is the intentional degrading of the GPS signal by the control segment. Only users authorized 

by the military are capable of receiving the classified signal. The XR-5PC is a six-channel receiver 

providing information on up to eight satellites in view (26). The XR-4PC is also capable of tracking 

eight satellites; however, this receiver only contains two channels (25). 

1.2-4 Extended Kaiman Fitter Overview. A Kaiman filter is an optimal recursive data 

processing algorithm (14). The conventional Kaiman filter is based upon linear models. Because the 

navigation equations are nonlinear and Kaiman filters require linear models, a variation from the 

traditional Kaiman filtering technique is necessary. The type of estimator used in this navigation 

integration scheme is an extended Kaiman filter. The extended Kaiman filter relinearizes about each 

estimate once it has been computed. By using the extended Kaiman filter, validity of the assumption 

that deviations from the nominal trajectory are small enough to allow linear perturbation techniques 

to be employed is improved (15). Rather than relying solely on either the INS or the GPS navigation 

solution, the Kaiman filter uses the statistical characteristics of the errors in both systems to 

determine the optimal combination of information. 
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1.2.5 GPS/INS Integration. The GPS/INS integration exploits the individual strengths 

of each system. The advantage of GPS is long-term accuracy, which can be used to upgrade the 

performance of an INS. The INS has the weakness of slowly drifting over a long period of time. In 

other words, the filter uses the good low frequency information from the GPS data to damp out 

slowly growing errors inherent in the INS. On the other hand, the INS has exceptional qualities in 

the short term and can be used to enhance the performance of GPS, especially in a highly dynamic 

flight scenario or a jamming environment. The GPS/INS signals may be optimally combined to 

provide even greater navigational accuracy, or in the event of a failure, each system may be used 

independently. These integrations provide a system that exploits the complementary characteristics 

of both GPS and INS. 

1.2.5.1 Integration Approaches. There exist several methods of integrating GPS and 

INS information via an extended Kaiman filter. The Kaiman filter may use a direct (total state 

space) or indirect (error state space) implementation, and feedforward or feedback mechanizations. 

The direct approach employs total states such as vehicle position and velocity in the filter. The 

direct implementation places the filter directly into the INS control loop; therefore, the filter would 

have to keep up with vehicle angular motion and be required to suppress noisy and sometimes 

erroneous data. Most INS sampling rates range from 50-100 Hz; this sampling rate requirement 

makes this type of integration unfeasible for in-flight applications. The Kaiman filter requires too 

much computation time to keep pace with the sampling rate that would be required in following the 

movement of the vehicle. In addition, some of the vehicle dynamics are nonlinear, so a conventional 

linear Kaiman filter could not be used. Yet another disadvantage is that if the filter should happen 

to fail, the INS cannot operate (14). 

The indirect approach estimates the errors in the navigation and attitude information 

using the difference between the INS and GPS data. Since the filter is out of the INS loop, the 

matter of reliability or through-put is no longer an issue. Also, the sampling rate for an indirect 
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implementation is much slower since the filter follows the lower frequency errors of the INS rather 

than the aircraft dynamics (14). Sample periods on the order of a number of seconds are not 

atypical. This slower sampling rate provides the extended Kaiman filter with much more time to 

complete its computations. 

The feedforward approach compares the GPS and INS data and uses the result to estimate 

the errors in the inertial system. By subtracting the estimated errors from the inertial data, the 

computer maintains the optimal estimates of position, velocity and attitude. In this configuration, 

the INS operates independently. In other words, the INS errors will continue to slowly grow. As 

previously mentioned, the Kaiman filter is based on the adequacy of its linearized model, so it is 

necessary for the errors in the inertial system to remain of small magnitude (14). The integration 

designs developed at AFIT over the past several years have been of this indirect feedforward type. 

The feedforward implementation has worked well in AFIT simulations because linear truth models 

are used. Since the truth and filter models are both linear, large INS errors can be accurately 

estimated by the filter. However, in the real world, the actual system error dynamics are nonlinear, 

so linear models are unable to estimate large INS errors properly. The extended Kaiman filter 

estimates are only as good as the models being employed. This research will explore the adequacy 

of the computer simulation's linear truth models in a feedforward configuration versus the actual 

GPS/INS outputs. Figure 1.1 illustrates a feedforward implementation. 

The Kaiman filter indirect feedback mechanization generates the estimates of the errors 

in the inertial system, but these are fed back to the INS as corrections. This method does not 

allow the inertial errors to grow unchecked, and the adequacy of the linearized model is enhanced. 

Over the long term, the indirect feedback implementation is more accurate than the feedforward 

approach. A disadvantage of the feedback method is that the INS is totally dependent on the EKF 

estimates. This reliance on the EKF permits the INS to be reset to erroneous positions due to 

glitches in the EKF output. The use of long sample periods in a feedback implementation allows 
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Figure 1.1    EKF Feedforward Implementation for a GPS/INS Integration 

sufficient time to test the EKF's navigation solution before applying it. The system employing the 

feedforward method could provide three separate solutions: GPS, INS, and GPS/INS navigation 

solutions. The feedback implementation can only provide a GPS and GPS/INS solution. One of 

the goals of this research is to discern when a feedback implementation becomes more advantageous 

than the feedforward approach. Figure 1.2 shows the structure of a feedback implementation. 

This thesis research will use a tightly-coupled scheme for the GPS/INS integration. A 

tightly-coupled implementation was chosen for this research because it provides the more optimal 

navigation solution and has been used by AFIT in past theses (10, 18, 20, 22, 27). Tightly-coupled 

systems, use the most basic of information from each sensor instead of an output from the sensor's 

local filter. For instance, satellite ephemeris data is collected to compute ECEF positions, and 

pseudoranges are taken directly from the satellites. Other integrations, called loosely-coupled, use 

the position outputs of a Kaiman filter solely dedicated to the GPS unit, rather than raw data 

sent to the GPS/INS integrated system's extended Kaiman filter. The instability problem caused 

by filters driving filters enters the picture with loosely coupled systems, because the errors in 

various sensors are cross-correlated. The cross-correlation and temporal correlation of data are 

not adequately modeled or compensated for in the GPS/INS integrated filter's design. Techniques 
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Figure 1.2    EKF Feedback Implementation for a GPS/INS Integration 

have been developed to use this preprocessed data, most of which reduce the temporal correlation 

of data by lengthening the measurement sampling time (11, 24). The technique of using longer 

sampling times addresses the temporal correlation issue, but does not confront the cross-correlation 

issue. This thesis will only concentrate on tightly-coupled systems, and will not pursue the issues 

of loosely-coupled systems. 

The integration of components is the chief technical obstacle to GPS/INS optimal inte- 

gration, or tight-coupling. The benefits to be gained from optimal integration or tight-coupling of 

GPS and INS components are high performance in terms of navigation accuracy, rejection of radio 

interference and dynamics tracking ability, and low cost in terms of total electronics package size, 

weight, power consumption and production cost. As previously stated, the GPS/INS combination 

can function more efficiently in severe environments than either system alone. Inertial aiding to 

the GPS receiver allows it to use narrower tracking loops for rejecting jamming and for rapid re- 

acquisition after the interruption of signals. Conversely, the inertial navigation system will only 

navigate accurately for a short period of time without in-flight resets from an integration filter 

using GPS measurements (12). 

Although the advantages are very attractive, tightly-coupled systems do have potential 

problem areas. Timing difficulties are the primary problem areas. The GPS and INS outputs must 

be synchronized with a common timing signal in order to provide appropriate input data to the 
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EKF. If the timing signal is lost, then the integrated navigation solution is lost (24). The timing 

issue is somewhat diminished in this research due to the fact that the platform remains stationary; 

therefore, matching GPS and INS outputs with vehicular movement is irrelevant. 

1.3    Problem Definition 

The research conducted under this thesis will employ both full and reduced order models 

developed in past AFIT theses and Avionics Directorate of Wright Laboratory research. These 

models will be used in an extended Kaiman filter to provide a navigation solution. In order to 

determine the accuracy of these models, the navigation solutions of different computer simulations 

will be compared to the GPS/INS integrated hardware results. In a perfect world, the simulation 

outputs would mirror the real world. Realistically, we know this will not be the case; however, a 

subject of particular interest is to determine exactly how close the computer simulation is to the 

actual results. 

In addition to computer simulation versus real world, several different filters will be used in 

the EKF of the hardware integration and their performances compared against each other. The 

purpose of this comparison is to determine the accuracy of the models in obtaining a navigation 

solution. The filters studied will be the 69-state, 61-state, 49-state, 41-state, and 13-state; Chapter 

III describes these filters in detail. 

This research will use an extended Kaiman filter with an indirect implementation. The system 

is tightly-coupled and feedforward. The results will be analyzed to determine the consequences of 

not resetting the INS, as in a feedback configuration. 

1-4    Scope 

This thesis will concentrate on a stationary platform. The scope is defined by the lim- 

itations imposed by the AFIT Navigation Laboratory facilities.   The current capabilities of the 
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laboratory do not include a method to operate the LN-94 INS on a moving platform. The models 

developed by AFIT were used in conjunction with a computer-simulated flight profile produced on 

the software package PROFGEN (19). The stationary platform restriction imposed by the hard- 

ware somewhat limits the results of this research, but does establish a starting point for future 

research. Due to the unobservability of some states while in a stationary position, the results of 

this research may not fully apply to moving platforms, especially to filter tuning results. This 

GPS/INS integration will be done in a post-processing mode. Eventually, AFIT hopes to have a 

real-time tightly-integrated system. Since this research is a pioneering effort and has not previously 

been accomplished at AFIT, post-processing was chosen as a first step. The results of this thesis 

should provide a foundation for future GPS/INS integrations. 

1.5   Assumptions 

Assumptions are an integral part of any study so that the results can be accurately 

evaluated. This section outlines the assumptions that have been made in this thesis. 

1. The computer simulations were developed and operated using routines written in the commer- 

cially available software, MATLAB (13). The MATLAB routines were directly patterned after 

the software Multimode Simulation for Optimal Filter Evaluation (MSOFE) (3). MSOFE is 

an established USAF software package to develop and test Kaiman filter algorithms. The 

MATLAB routines were verified by running identical simulations on both MATLAB and 

MSOFE and comparing the results (7). 

2. The MATLAB simulations were conducted using 10-run Monte Carlo analyses. While a larger 

run size for the Monte Carlo analysis is preferable, this number of runs was selected due to 

computer and software limitations. 

3. The INS platform is assumed to be stabilized with a barometric altimeter. An INS is unstable 

without an outside measurement source in the vertical channel. While a barometric altimeter 
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is not the only way to stabilize a platform, it is a commonly used method for the LN- 

94. The use of the barometric platform is included in the modelling of the system. The 

simulated output of a barometric altimeter was sent to the LN--94 over the 1553 data bus 

to stabilize the vertical channel during data collection (5). Unlike past AFIT theses, the 

barometric altimeter will not be used as an explicit measurement for the EKF, since the 

actual barometric altimeter is not available in the laboratory. An objective of the research is 

to use only sensor measurements in the simulation that are available in the laboratory. The 

sensor measurements available in the Navigation Laboratory are GPS pseudoranges. 

4. The stationary platform analysis developed in this research will be extendable to a moving 

platform in future AFIT research. 

1.6   Plan of Attack 

This research is broken down into three basic components: GPS/INS integrated system 

simulation, hardware integration of the XR-5PC or XR-4PC and the LN-94, and the comparison 

of results between simulation and the actual integrated system . 

1.6.1 GPS/INS Integrated System Simulation. The first task is to integrate the GPS and 

INS in computer simulation. The simulation is to be conducted using a collection of MATLAB 

m-files patterned after the USAF's Multimode Simulation for Optimal Filter Evaluation (MSOFE). 

The m-file allows the user to execute sequences of commands that are stored in files with names 

that have an extension of .m (13). A description of these m-files, called MATSOFE, is contained 

in Appendix J. Unlike past AFIT simulations conducted for the Central Inertial Guidance Test 

Facility (CIGTF) at Holloman AFB, the only systems integrated will be the GPS and INS. Past 

AFIT theses have used the barometric altimeter, Doppler radar, and Range/Range-Rate systems for 

additional measurements. The previous models used in MSOFE have strangely required the use of 

the perfect Doppler radar measurements for velocity aiding (10, 18, 20, 27). These perfect velocity 
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measurements appear to be a coding problem in MSOFE and in theory are not necessary. This 

dilemma will be confronted and solved so that only GPS and INS measurements will be required. 

In the hardware integration, a simulated barometric altimeter measurement will be used to stabilize 

the INS vertical channel. In reality, the INS uses the barometric altimeter solely for vertical channel 

stability and the altimeter measurement for the extended Kaiman filter should not be necessary to 

accomplish accurate position estimates. Once the simulation is running satisfactorily, the reduced 

order filter used in the EKF will be tuned and the results plotted for later comparison. 

1.6.2 GPS/INS Hardware Integration. The second step in this research will be to inte- 

grate the XR-4PC or XR-5PC and the LN-94. The basic MATLAB m-files used in the computer 

simulation will be altered to accept real data. The data will be collected from the LN-94 and 

GPS receivers and combined in the EKF. The data files will be used as input for the EKF in a 

post-processing methodology. The filter will be retuned for the real data and the results noted 

for comparison. Data from both the XR-4PC and XR-5PC will be collected to determine the 

differences in two-channel and six-channel receivers. 

1.6.3 Comparison of Results. The final step is to analyze the results of the data collected 

from the hardware integration and the computer simulation. Specific areas of interest are the vali- 

dation of the 39-state LN-94 truth model and various GPS truth models using real data; the optimal 

navigation accuracy attainable using the various GPS filter models in a hardware integration; and 

investigation of actual integration versus simulation results. In both simulation and hardware inte- 

gration, the full order truth model and reduced order models will be used in the filter. In addition, 

the navigation solutions from the inertial navigation system, extended Kaiman filter, and the GPS 

batch least squares computations using real data will be compared. The research will delve into 

issues such as measurement update rates and the validity of the feedforward implementation. 
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1.7   Overview of Thesis 

Chapter II presents the theory used in this research. Extended Kaiman filter theory is 

introduced first. In addition, the topics of filter order reduction and tuning will be discussed. The 

theory used to develop the algorithms for calculating GPS satellite ECEF positions is presented. 

The chapter concludes with a presentation of batch least squares processing used in determining a 

position solution with GPS data only. 

Chapter III describes in detail the navigation system parameters and the INS and GPS system 

truth models used. An overall system description is defined for both the computer simulation and 

the hardware integration. The final section of the chapter presents the EKF measurement equations 

and filter models. 

Chapter IV presents the results of this study. A comparison of the simulation system truth 

and reduced order filter models to the actual hardware integration results is shown. In addition, 

the performance of the individual subsystems is compared with the integrated navigation system 

results. Finally, results are presented which provide a basis as to when a feedback implementation 

becomes the more viable method in comparison to the feedforward implementation. 

Chapter V summarizes the research with conclusions and recommendations for further re- 

search. The recommendations are specifically aimed at the goal of establishing a real-time, mobile 

GPS/INS integrated navigation system at AFIT. 
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77.   Theory 

2.1 Overview 

The purpose of this chapter is to provide an overview of the theory necessary to accomplish 

this research. The first section presents Kaiman filtering theory, followed by a discussion on model 

reduction and concluding with the subject of filter tuning. Complete derivations and discussions 

of the noted topics can be found in the references (14, 15). The theory then moves into the area 

of determining GPS satellite ECEF positions. The chapter ends with a presentation of batch least 

squares theory in computing GPS-only derived navigation solutions. 

2.2 Extended Kaiman Filter Equations 

A Kaiman filter is an optimal recursive data processing algorithm which is based upon 

linear models. The GPS receiver and INS error state models consist of a set of linear state-space 

differential equations and nonlinear measurement equations. These nonlinearities prevent the use 

of a linear Kaiman filter. Because of this constraint an extended Kaiman filter (EKF) is to be 

implemented in this project. The basic idea of the EKF is to relinearize about each state estimate 

once it has been computed (15). This relinearizing about newly declared nominals at each sample 

time enhances the adequacy of the linearization process. The subsequent derivation and many of 

the following equations are taken from Maybeck (15). 

The state models are a set of nonlinear continuous-time differential equations of the form: 

i(0 = f[x(*),f] + G(t)w(<) (2.1) 

where f[x(i),i] is the state dynamics vector which in general is a nonlinear function of the state 

vector x(t) and of time t. G(t) is a noise distribution matrix which for this research is an identity 

(I) matrix without loss of generality.  The vector represented by w(i) is a white Gaussian noise 
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vector process with the following statistics: 

mw = E{w(t)} = 0 (2.2) 

and noise strength: 

E{w(t)v,T(t + r)} = Q(t)6(T) (2.3) 

The measurements of the system are assumed to be discrete-time measurement updates of 

the form: 

z(ti) = h[x{ti),ti] + v{ti) (2.4) 

where z(t;) is the measurement available at time ti, h is a known vector which is a function of the 

states and time. The vector h can be either linear or nonlinear. For this effort, h is a nonlinear 

function of the state vector and time due to the nonlinear nature of the GPS measurements. The 

vector v(<8) represents a white Gaussian noise process with the following statistics: 

m, = E{v(ti)} = 0 (2.5) 

with noise covariance: 

R-(^z')     ti — tj 
£{v(iz)vT(*;)} = { (2.6) 

0 trftj 

For the EKF to produce an estimate of the error state vector x(t), the system must first be 

linearized. To form the linearized perturbation equations, the linearization method described in 

(14) will be used. The following derivation is the linearization of Equations (2.1) and (2.4) using 

this method. 
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First the nominal state trajectory, x„(i), satisfies the differential equation: 

MO = *[*»(*)>*] (2-7) 

which starts from the initial condition x„(i) = xno where f(-, •) is the same as defined in equation 

(2.1). The nominal noise-free measurement equation taken with respect to this nominal trajectory 

becomes: 

zn(ti) = h[xn(ti),ti] (2.8) 

where h[-, •] is as given in (2.4). 

To perturb the actual state from this assumed nominal state trajectory, subtract Equation 

(2.7) from (2.1): 

[x(0 - x„(*)] = *M*).*] - f txW>*] + G(*)w(t) (2.9) 

Now taking a Taylor series expansion about x„(i), f[x, t] becomes: 

f[x(t),t] = f[x(i),*]|x=x„W + ^f[x,t]UXn(j)fe(i) +h.o.t. (2.10) 

where <5x is the perturbation state given by [x(i)-x„(f)] and h.o.t. is higher order terms which rep- 

resent terms of Ox in powers greater than one. Invoking a first order approximation and substituting 

Equation (2.10) into Equation (2.9): 

6x(t) = F[f; xn(i)]£xOO + G(i)w(f) (2.11) 

where 6x(t) is the perturbation state defined by [x(i) - xn(<)] and the matrix F[t; xn(t)] is defined 

by: 

(2.12) Ffc*.«]-*1^ <9x 
x=x„(t) 
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Using the same procedure on Equation (2.4), the perturbed discrete-time measurement equa- 

tion is expressed as: 

6i(ti) = Hfe; xnft)]«^*,-) + vft) (2.13) 

where the matrix H[tj;xn(tj)] is defined by: 

<9h[x, U] 
H[U;xn(ti)] = 

dx 
(2.14) 

x=x„(t;) 

The nonlinear dynamics and measurement update equations have been linearized to form 

"perturbation" or "error" state equations. This linearization process allows for the application 

of a linearized Kaiman filter for the system described by Equations (2.11) and (2.13). The filter 

implemented will output the optimal estimate of the state error vector 6x represented by 6x. The 

estimate of the total state of the system, x(t), can be computed using: 

x(t) = xn(t) + 8x(t) (2.15) 

The preceding derivation is adequate so long as the "true" and nominal trajectories do not 

differ significantly; if they do, large unacceptable errors will result. This requirement is clearly 

unreasonable for most navigation scenarios. To avoid this possible problem, an EKF is to be used 

in this application. The EKF relinearizes about newly declared nominal trajectory segments and 

the measurement vector about each new state estimate. This redeclaration of the states about 

the new nominal trajectory ensures that the deviations from the nominal trajectory will remain 

small. This validates the assumption made earlier and allows for linear perturbation techniques to 

be employed with adequate results. 
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The state estimate and covariance are propagated from time U to the next sample time ti+i 

through the integration of the following equations: 

i(t/U) = f [x(t/*0,*] (2-16) 

P(t/*0 = F[t;x(t/ti)]P(t/U) + P(t/ti)F
T[t;x(t/ti)} + G(t)Q(t)GT (t) (2.17) 

where the notation (t/U) stands for "at time, t, based on measurements up through time t", and 

where: 

(2.18) F[fMt/u)]-mXtt] 
dx 

x=x(</tO 

using the results of the previous measurement update cycle as initial conditions: 

x(U/ti) = x(f+) (2.19) 

P(ti/ti) = P(tf) (2.20) 

and the superscript, +, indicates the value at a time after the incorporation of a measurement. 

With the incorporation of discrete-time measurements, z,-, the EKF is accomplished through 

the following equations: 

K(f4) = P(<r)HT[t,-;x(tr)]{H[t,-;x(tr)]P(<r)HT[*,-;x(*r)] + ^t,-)}-1 (2-21) 

*<ft) = *(*D + K(*,-){2.- - M*(*r ).**]} (2-22) 

P(tt) = P(f,r) - K(U)H[U;x(tT)]P(tT) (2.23) 

where H[<,-;x(t,~)] is defined in Equation (2.14) and the superscript, -, indicates a value at a time 

before incorporation of a measurement. 
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2.3 Kaiman Filter Order Reduction 

The goal of filter order reduction is to decrease the number of states in the filter model 

with respect to the truth model states without significantly degrading the accuracy of the remaining 

state estimates. Filter order reduction is an important step in the actual on-line implementation 

of Kaiman filter designs. The use of a full-order filter is computationally burdensome for most air- 

craft computers due to the large number of truth model states which must be evaluated. Aircraft 

computer systems have several functions which must run simultaneously; in order to be able to 

perform all functions adequately on-line and in real-time, filter order reduction must be accom- 

plished. Thus, the reduction in states sacrifices to some extent the performance of the filter. The 

goal is to eliminate only the states which have a minimal impact on the navigation solution. The 

restraints on computer time justifies the need for filter order reduction. Although filter order reduc- 

tion reduces the computational burden, the reduced order filter will provide a suboptimal solution. 

To compensate for this sub-optimality problem, the process of filter tuning must be accomplished. 

Filter tuning will be discussed next in Section 2.4. 

2.4 Kaiman Filter Tuning 

The basic objective of filter tuning is to achieve the best possible estimation performance 

from a particular filter, i.e., totally specified except for Po, x„, and the time histories of Q and R. 

These statistics account for actual disturbances and noises in the system, as well as uncertainties 

of the filter model due to order reduction and nonlinearities. The less accurate the filter model, the 

greater the noise strengths or uncertainty in the model must be. In tuning the filter, Po determines 

the initial transient performance of the filter, whereas the Q and R histories dictate the longer 

term steady state performance (14). 

In order for the filter to track the given trajectory accurately in the extended Kaiman filtering 

problem, the process and measurement noise strengths Q and R must be appropriately tuned. By 
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increasing the filter process noise strength (Q), the uncertainty of the filter model is increased. 

The added process noise causes the filter to rely more heavily on the information provided by the 

incoming measurements. An increase in Q causes the P(t) elements to grow more rapidly between 

measurement times. Conversely, an increase in the observation matrix noise covariance (R) results 

in less confidence in the sensor measurements. As would be expected, an increase in measurement 

noise causes the filter to place more confidence in the dynamics model. If the eigenvalues of Q are 

large compared to the eigenvalues of R, steady state is quickly reached because the uncertainty 

involved in the state propagation is large compared to the accuracy of the measurements, so the 

new state estimate is heavily dependent upon the new measurement and not closely related to prior 

estimates (14). 

The MSOFE User's Manual gives a list of criteria to meet when evaluating filter behavior (3). 

These criteria were used as a guideline in tuning the filters in simulation. The filter tuning criteria 

emphasized most will be that the filter estimation error should be zero-mean and the mean ± one 

sigma of estimation error should fall within the envelope formed by zero ± one filter-predicted 

sigma. Of course, in the case of the hardware integration, the tuning values which provide the best 

position and velocity solutions will be used. 

2.5   Satellite Position Determination 

In order to accomplish the GPS/INS tightly-coupled hardware integration, the ECEF 

positions of the satellites must be computed. These ECEF positions are used to calculate an INS- 

predicted pseudorange to each satellite. This section will describe the theory used in developing 

an algorithm to compute the ECEF positions using GPS satellite ephemeris data. The complete 

development of the theory can be found in a paper written by Van Dierendonck (28). 
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A Keplerian representation is employed in the GPS system to represent the nominal satel- 

lite orbit with additional parameters describing the perturbations. The perturbations about the 

Keplerian orbit are required to obtain the required accuracy. Kepler's equation is given by: 

E(t) = M(t) + esinE(t) (2.24) 

where: 

E(t) = Eccentric anomaly 

M(t) = Mean anomaly 

e = Eccentricity 

The equations for the anomaly from the nominal orbit is 

sinvtt) = —-V2 (2.25) w        1 - ecosE(t) K       ' 

WcosEit) — e .„ „„. 
=     „, s (2-26) 

1 - ecosE(t) v       ' 

where v(t) is the true anomaly. It is impractical to solve for the nonlinear term, E(t), in any way 

except approximately because, for e < 0.663, the exact solution is 

oo    1 

E(t) = M(t) + 2 Y^ T-Jh(ke)sin[kM(t)] (2.27) 

where the Jjt terms are Bessel functions of the first kind of order k. In this thesis, the solution was 

found by using successive substitutions to solve Kepler's equation. Five iterations were found to 

be sufficient in this circumstance (6). 
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Table 2.1    Ephemeris Representation Parameters 

Mo Mean anomaly at reference time 
An Mean motion difference from computed value 
e Eccentricity 

VA Square root of the semi-major axis 

fio Right Ascension at reference time 

»0 Inclination angle at reference time 
u Argument of perigee 
Q Rate of right ascension 
&UC Amplitude of the cosine harmonic correction term to the argument of latitude. 
Ous Amplitude of the sine harmonic correction term to the argument of latitude. 

Crc Amplitude of the cosine harmonic correction term to the orbit radius. 

Crs Amplitude of the sine harmonic correction term to the orbit radius. 

Cic Amplitude of the cosine harmonic correction term to the angle of inclination. 

Cis Amplitude of the sine harmonic correction term to the angle of inclination. 

to Ephemeris reference time. 
AODW Age of Data Word 

The ephemeris information is transmitted to the GPS receiver which describes the satellite 

orbit for a one hour interval of time. This information also describes the ephemeris for an additional 

30 minutes to allow the user to receive the parameters for the new interval of time. The definitions 

of the parameters are given in Table 2.1. An age of data word (AODW) is provided to the user 

to give a confidence level in the ephemeris representation parameters. AODW represents the time 

difference between the reference time (t0) and the time of the last measurment update (ti) used to 

estimate the representation parameters. 

AODW = t0-t, (2.28) 

The ECEF positions of the GPS satellites are found by first solving for the mean motion, no, 

using the semi-major axis of the orbit, A, and ß = 3.986005xl014meters/second: 

n0 (2.29) 

The corrected mean motion is then determined by 
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n = n0 + An (2.30) 

The time from epoch is computed from the difference in actual time and the ephemeris 

reference time: 

tk=t-t0 (2.31) 

The mean anomaly is then found by 

Mk=Mn+ ntk (2.32) 

Once the mean anomaly is obtained, Kepler's equation can be iteratively solved. 

Mk=Ek- esinEk (2.33) 

The true anomaly, vk, is then calculated from Equations (2.25) and (2.26). Using the true anomaly, 

vk, the argument of latitude can be determined: 

<j>k = vk + u (2.34) 

By inserting the argument of latitude into the following equations, the ephemeris correction terms 

for latitude, radius and inclination can be solved. 

8uk — Cussin2<j)k + Cuccos2<j>k (2.35) 

6rk = Crecos2<f>k + Crssin2(j)k (2.36) 
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Suk = Ciccos2<f>k + Cissin2(f>k (2.37) 

The corrections are then combined with the parameters at the satellite reference time to yield the 

corrected latitude, radius, and inclination. 

uk = <f>k + Suk (2.38) 

rk = A(l-ecosEk) + 6rk (2.39) 

h = io + Sik (2.40) 

The corrected latitude, radius, and inclination are then used to determine the satellite's position 

in the orbital plane: 

x'k = rkcosuk (2-41) 

y'k = rksinuk (2.42) 

The corrected longitude of the ascending node is found from: 

fit = Q0 + (fi - Ve)tk - fUo (2.43) 

where £10 and Q are defined in Table 2.1 and tle = 7.29211bxl0~5rad/sec, the WGS 84 value of 

the earth's rotation rate. 
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Using the orbital plane positions, the ECEF positions of the satellites can be computed using: 

X)c = x'kcos£lk - y'kcosiksinQk (2.44) 

yk = x'ksintik — y'kcosikCos£lk (2-45) 

Zk = y'ksinik (2.46) 

The ECEF frame used in the above equations has the x direction in the true equatorial plane 

in the direction of the Greenwich meridian and the z axis along the true earth spin axis, positive in 

the northern hemisphere. This frame is then transformed to coincide with the Litton ECEF frame. 

The Litton ECEF frame has the z axis passing through the Greenwich meridian and the y axis 

along the true earth spin axis. (Refer to Figure 2.1) Since the LN-94 also provides information in 

terms of feet, the ECEF position was converted from metric to English units. 

2.6    GPS Position Using Batch Least Squares 

Chapter IV of this thesis will compare the results of the integrated GPS/INS system to 

the GPS-only navigation solution. For the calculation of position using GPS data only, this research 

uses batch least squares in determining the user position. Although this batch least squares method 

is rather slow computationally in comparison to the recursive Kaiman filter, it is adequate since 

the platform is stationary and all calculations are done in a post-processing mode. The algorithm 

to perform the batch least squares is much simpler than the EKF and provides sufficient results 

(6). The following section describes the least squares theory in the context of solving only the GPS 

measurement equations to find a navigation position solution (21). 
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Figure 2.1    GPS Satellite and User ECEF Positions 

Figure 2.1 shows the Litton ECEF reference frame. The user's position is indicated by the 

variable, Ru, while the ECEF coordinates of the satellite are Ri. The line-of-sight distance vector 

from the user to the satellite is shown as D{. 

Let the user's position vector, Ru, and the satellite's position, Ri, be broken into the following 

components: xu,yu,zu and Xi,yi,Z{ respectively, coordinatized in the Litton ECEF frame. The 

subscript i indicates which satellite is being tracked; therefore, there is one equation for each 

satellite. The distance variable, T, is the unknown user clock bias multiplied by the speed of light. 

The line-of-sight distance equations from the user to the satellite are given by 

Di = ^{xu - Xi)2 + (yu - Viy + (zu - Zif + T (2.47) 

In this equation there are four unknowns (three user positions and time); thus at least four equations 

are required corresponding to the four satellites in order to find a three-dimensional solution. 

However, these equations, are nonlinear and are very difficult to solve explicitly. An alternative is 

to linearize these equations about a nominal point. The initial nominal point is actually one's best 

guess. Let the nominal point be described as xn, yn,zn,Tn, Dn{. Also define the corrections as Ax, 
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Ay, Az, AT, and A£>, so that the true position is x=z„+Ax, y-yn+Ay, z=z„+Az, T=Tn+AT, 

and Di=D„i+ADi. The nominal range to the satellite is 

Dni = y/(xn - Xif + (yn - yi)2 + (zn - Zif + Tn (2.48) 

The actual range can then be written as 

Di = Dni + A A = V(*n + Az - x{f + (yn + Ay- yif + (zn + Az - ztf + Tn + AT    (2.49) 

Linearizing this equation by using a first order Taylor series approximation, the equation becomes 

(xn - zQAa:     (yn - yi)Ay     (zn - z{)Az 
AA' -     n ._T     + ~n~~ZTr~        D --T 

(2.50) 

In this thesis, i (the number of satellites) will range from four to eight. Recall, the minimum 

number of satellites to solve a three dimensional problem is four. Equation (2.50) can be written 

in state-space form as 

AZ?i 

AD2 

AD3 

ADA 

<*11 «12 a13 1 

Ö21 C*22 «23 1 

«31 «32 «33 1 

«41 a42 «43 1 

Ax 

Ay 

Az 

AT 

(2.51) 

where, a,-i = „" x* , av2 = Mn ^ , a«3 = n" % and i is the satellite number. A least squares 

solution to the equation can be found by iterating the equation until the error states get acceptably 

close to zero, producing the user's position when added to the nominal. 

£ = (A-,
J4)-MijT (2.52) 
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Equations (2.51) and (2.52) are related by 

Ax 

Ay 

Az 

AT 

(2.53) 

and 

«11 «12 «13 1 

«21 «22 «23 1 

«31 «32 «33 1 

«41 «42 «43 1 

y = 

ADX 

AD2 

AD3 

AD4 

(2.54) 

(2.55) 

The following discussion presents the derivation of Equation (2.52). 

In the GPS-data-only solution, there is a possibility of eight equations with the four previously 

specified unknowns. To illustrate the least squares method, consider the equation Ax = b, shown 

in Figure 2.2. If A provides more equations than unknowns, then b almost certainly will not fall 

in the column space 71(A). In other words, the number of observations is larger than the number 

of unknowns, so it is expected that Ax — b will be inconsistent. There will not exist a choice of x 

that perfectly fits the data 6. When determining a solution, the least squares method minimizes 

the average error in a series of equations. Figure 2.2 shows geometrically the least squares solution. 
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In order to solve the equation Ax = b, b must be projected onto the subspace. The dotted line in 

Figure 2.2 is the error vector, b - Ax. This error vector is perpendicular to the subspace (23). 

_bll 

Figure 2.2    Least Squares Solution 

The least square error is E — \\Ax — 6|| where x minimizes the distance from 6 to the point Ax 

in the column space. Ax is the combination of the columns with coefficients Xi,..., xn. Searching 

for the least squares solution, which minimizes E, is the same as locating the point p = Ax that 

is closer to b than any other point in the column space. In reference to Fig 2.2, the error vector 

b — Ax must be perpendicular to that space. The calculation of x and the projection Ax can be 

accomplished in two ways (23). 

1. The vectors perpendicular to the column space lie in the left nullspace. Thus the error vector 

b — Ax must be in the nullspace of AT: 

AT(b -Ax)=0 or AT Ax = ATb (2.56) 
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2. The error vector must be perpendicular to every column of A: 

b- Ax (2.57) 

Equations (2.56) and (2.57) are equivalent to Equation (2.52). Thus, when given GPS position 

information only, a batch least squares method is used. The GPS position and time estimates are 

then found by iterating Equation (2.52) until the errors get very close to zero. 

2.7    Chapter Summary 

This chapter reviewed extended Kaiman filtering theory. The EKF will be the primary 

integration tool used in combining the GPS pseudorange measurements and the INS navigation 

solution. The discussion then moved to filter order reduction and filter tuning. These subjects 

are critical to this thesis, since every INS model used in both the system truth and filter models 

is reduced from the Litton LN-93 truth model. The discussion then presented the equations used 

in determining the GPS satellite ECEF positions. The chapter concluded with a presentation of 

batch least squares theory, which will be used in the determination of the GPS-only solution. 
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III.   Navigation Models 

This chapter begins with a discussion of the computer simulation model and continues 

with a presentation of the GPS/INS hardware integration. The chapter then describes the INS 

and GPS models used within the extended Kaiman filter in both the simulation and hardware 

integration. Both the system truth and filter models are given, as well as the measurement equations 

used. 

3.1    Computer Simulation 

The goal of the computer simulation is to duplicate the actual GPS/INS hardware inte- 

gration. This simulation is accomplished with the aid of system truth models which characterize, 

as closely as possible, the errors of the GPS and INS, trajectory generators which provide a flight 

profile, and a satellite orbit generator which provides the Earth-Centered-Earth-Fixed (ECEF) co- 

ordinates of the satellites. Of course these models are not perfect, but hopefully, they will provide 

the required precision in order to accurately determine the quality of the navigation system design. 

Figure 3.1 breaks down the computer simulation into its major components and illustrates 

the signal flow. This figure is referred to throughout the chapter. Keep in mind, the block diagrams 

used are actually a collection of MATLAB m-files written to provide the desired outputs. 

The Flight Trajectory Generator transmits information pertaining to the vehicle's position 

and orientation. Specifically, the Flight Trajectory Generator provides vehicle position, velocity, 

acceleration, roll, pitch, yaw, and the rates of change of the roll, pitch, and yaw. In Figure 3.1, 

the output of the Flight Trajectory Generator is X, the true position. For this research, the Flight 

Trajectory Generator was relatively simple since the platform was to remain stationary. For the 

stationary case, all variables of interest were zero except for the position coordinates of the LN-94 

and the GPS antenna. The Flight Trajectory Generator provides the information to three places: 

(1) the INS system truth model to compute the INS simulated errors, (2) the summing junction 
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Figure 3.1    Computer Simulation Block Diagram for the Feedforward GPS/INS Integration 

to the right of the INS system truth model block to provide simulated INS output, and (3) to the 

GPS summing junction to produce the simulated GPS receiver output. 

The INS Computed Error States Block contains the 39-state INS truth model. The truth 

model will be presented in detail in Section 3.3.2. The output of the INS Computed Error States 

Block, SKINS, is summed with the true position, X, to produce the simulated INS output. 

The Satellite Orbit Generator calculates the ECEF positions of four satellites. This subroutine 

is capable of providing nearly any GDOP; however, for the simulation the satellite orbit trajectories 

were positioned to provide an average GDOP of 3.22. This particular value was selected because 

it is a representative number found when collecting real data from the XR-4PC and XR-5PC GPS 

receivers. The Satellite Orbit Generator supplies information to the GPS summing junction to 

compute the GPS pseudorange and to the INS Range Computation block in order to calculate the 

INS predicted pseudorange. 

The True Range Block outputs Rrrue, the true range from the user to the satellite. The 

True Range Block transforms the Navigation Frame user position coordinates, X, from the Flight 
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Trajectory Generator to ECEF coordinates. The satellite ECEF position is then differenced with 

the user position to determine the true range from the satellite to the user, Rrrue- The output of 

the True Range Block is combined with the errors from the GPS truth model located in the GPS 

Computed Error States to produce the GPS pseudorange, RGPS- 

The Range Computation Block receives the simulated INS output and the satellite ECEF 

positions. The INS output, X + 6xiNS is converted to the ECEF coordinate frame in the Range 

Computation Block. Then the satellite ECEF position is subtracted from the user ECEF position 

to determine the INS computed pseudorange, RINS- 

The purpose of the summing junction prior to the EKF block is to difference the INS com- 

puted pseudorange from the GPS pseudorange. The output of this summing junction is the sensor 

measurement error, SZGPS, which is provided to the Extended Kaiman Filter. 

The EKF block uses the sensor measurement error to compute the position, velocity, accelera- 

tion, and attitude errors. Extended Kaiman Filter theory is given in Chapter II. In the feedforward 

implementation, these filter computed errors are subtracted from the INS output to provide a best 

estimate of the user's navigation solution. With the feedback implementation, shown in Figure 3.2, 

the EKF output is supplied directly back to the INS in order to correct the position, velocity, and 

acceleration states before the INS computations are conducted. In the feedback configuration, the 

INS output is the best estimate of the navigation solution. 

3.2    Hardware Integration 

This section will relate the actual hardware integration to the blocks shown in Figure 3.3. 

Once again, the filter models and EKF equations are implemented in MATLAB m-files. The data 

was collected and stored in data files from the GPS receivers and LN-94 INS. This information was 

then fed to the EKF and post-processed in a feedforward implementation. 
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Figure 3.2    Computer Simulation Block Diagram for the Feedback GPS/INS Integration 

The GPS data collected consisted of satellite ephemeris data and pseudorange measurements, 

RGPS- An algorithm was written to calculate the satellite ECEF positions from the satellite 

ephemeris data as described in Section 2.5. These satellite positions were then provided to the 

Range Computation Block. The LN-94 position, velocity, acceleration, wander angle, and attitude 

information was collected from the 1553 data bus. The LN-94 data was used in conjunction with 

the satellite ECEF positions in the INS Range Computation Block to compute the INS-predicted 

pseudorange, RINS- 

The INS-computed pseudorange, RINS, and the GPS pseudoranges, RGPS, are then differ- 

enced at the junction prior to the EKF to produce the error in the sensor measurement. The EKF 

then uses these measurements to predict the errors in the navigation solution. The EKF error 

estimates are then subtracted from the INS output in the feedforward configuration, or fed back to 

the INS in the feedback implementation, to provide a navigation solution. 
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Figure 3.3    Feedforward GPS/INS Hardware Integration 

3.3   INS Models 

The system truth and filter models described in this section are derived from the 93-state 

Litton model (8). This section begins with a description of the revised 93-state model. The 39-state 

system truth model used in the computer simulation is then presented. The section concludes with 

the 11-state filter model used in both the computer simulation and the hardware integration. 

3.3.1 The 93-State LN-93 Error Model. The 93-state INS system truth model used in this 

research is a revision of the original Litton LN-93 state INS model. The modifications to the Litton 

model were made as a result of research done by the Wright Labs Avionics Directorate Research 

Group and past AFIT theses' results (18). The Litton model is composed of 93 states; these 93 

error states are further broken down into six categories. Appendix A contains a table of the states 

and their description. The six major categories of these 93 states are given below: 

Sx. = [5x^0x^6x3 6x4 6xJ#xJ]J 

where: 

<5xi contains the first 13 states which are position, velocity, 
attitude, and vertical channel errors. These states are classified 

(3.1) 
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as "general" errors corresponding to standard Pinson error model 
states and states associated with barometric altimeter aiding of the 
vertical channel. 

ÖX2 represents the "trend" states and are modeled as 
first-order Markov processes in the system truth model. This 
category is composed of the 16 gyro, accelerometer and 
baro-altimeter errors. 

6x3 consists of gyro bias errors, which are modeled 
as random constants. 

6x4 is also modeled as random constants and is made up of the 
accelerometer bias errors. 

6x5 is a set of first order Markov processes and is 
composed of the six accelerometer and gyro initial thermal transients. 

($X6 is composed of the 18 gyro compliance error states. 
These states are modeled as biases in the system truth model. 

The 93-state Litton model state space differential equation is given by: 

F11    Pi2    F13    F14    Fi6    Fie 

0      F22      0        0        0        0 

<5xi 

6x2 

6x3 
=: 

6x4 

6x5 

6X6 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 F55 0 

0 0 0 0 0 0 

6x1 Wi 

6x2 w2 

6x3 

6x4 
+ 

0 

0 

6x5 0 

6x6 0 

(3.2) 

This information was taken from the Litton LN-93 Error Budget (8). This truth model is the 

most detailed simulation model available for the LN-93. 

3.3.2 The 39-State LN-93 Error Model. The 39-state LN-93 model presented in this 

section is used as the system truth model in this research. Although the 93-state LN-93 model is 

the most accurate characterization available, the high degree of dimensionality makes it computa- 

tionally burdensome. Previous AFIT research conducted by Lewantowicz (9) and Negast (20) have 

demonstrated that the 39-state is a sufficient substitute for the 93-state model without a significant 

loss of accuracy. The 39-state model eliminates all states that do not produce significant errors. 

The state space equation, (3.2), is reduced to: 
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6xi 

6x2 
= 

6x3 

6x4 

Fn F12 F13 F14 

0 F22 0 0 

0        0 0 0 

0        0 0 0 

6x1 

8x2 

8x3 

6x4 

+ 

Wi 

w2 

0 

0 

(3.3) 

The four components of the 39-state vector do not directly correlate to the first four categories 

of the 93-state model as described in Section 3.3.1. The tables in Appendix A.7 give a complete 

description of the states. 

3.3.3 The 11-State LN-93 Error Model. The 11-state filter model is used in both the 

hardware integration and the computer simulation Extended Kaiman Filters. The 11-state filter 

consists of the first 11 states taken from the 93-state LN-93 model. This particular model has not 

been employed in past AFIT research. Previous AFIT research has used an 11-state filter; however, 

the last state in the filter model was state 23 of the LN-93 truth model (18, 20). AFIT research 

found that state 23, the total baro-altimeter correlated error, provided the best results, since the 

barometric altimeter was used as a sensor measurement. In this research, the barometric altimeter 

is used to stabilize the LN-94's vertical channel, but is not taken as a separate measurement for the 

EKF. Through experimental research, state 11, the error in the lagged inertial altitude, produced 

significantly better altitude estimates than state 23. Appendix C provides a description of the 

research and a comparison of the results leading to this filter model change. 

3.4    GPS Models 

There are four GPS models described in this section: the 30-state system truth, the 

22-state, the 10-state, and the 2-state filter models. This thesis will refer to these models by their 

minimum number of states (assuming that four satellites are being used); however, in reality the 

model may have more states depending upon the number of satellites being used for a navigation 

solution. For instance, the 30-state model is actually a 58-state model when eight satellites are 

being tracked. In addition this section also presents the pseudorange measurement equations; these 

equations provide the basis for the development of the observation matrix used in the EKF. 

3-7 



3.4-1 30-State GPS Model. The 30-state GPS system truth model is comprised of five 

types of error sources. By far, the most significant of these errors are the user clock bias and the 

user clock drift. The first two states model these errors as follows: 

SRclku 

öDtfku 
= 

0    1 

0    0 

SRclku 

öDclku 

(3.4) 

where: 

öRciku    —    range equivalent of user clock bias 

6Dciku    —    velocity equivalent of user clock drift 

The initial state estimates and covariances were taken from past AFIT theses: 

8R{t0) 

6D(t0) 
(3.5) 

and 

P«ßcik„,<5.Dc!ku(*o) — 

9.0zl014/*2 0 

0 9.0xl010 ft2/sec2 
(3.6) 

There remain seven error states for each of the four satellites. These seven errors are composed 

of the code loop, tropospheric, ionospheric, satellite clock, and three line-of-sight errors. The 

code loop, tropospheric, and ionospheric errors are modeled as first-order Markov processes. The 

remaining errors are modeled as random constants (18). The state space representation is shown 

below: 
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SRci 

SRtrop 

Oftion 

SRsclk 

Sii 

Sii 

-1 0 0 0 0 0 0 

0 1 
500 0 0 0 0 0 

0 0 1 
1500 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

SRci 

Ofhtrop 

O-K-ion 

SRsclh 

Sxi 

% 

6zi 

+ 

Wtrop{t) 

Wion(t) 

0 

0 

0 

0 

(3.7) 

where: 

vrGPs(t) 

Wcl 

IVtrop 

IVion 

0 

0 

0 

0 

The initial covariance for the states is given by: 

(3.8) 

GPS (*>) = ft2 

0.25 0 0 0 0 0 0 

0 1.0 0 0 0 0 0 

0 0 1.0 0 0 0 0 

0 0 0 25 0 0 0 

0 0 0 0 25 0 0 

0 0 0 0 0 25 0 

0 0 0 0 0 0 25 

The mean values and strengths of the dynamic driving noise are given by: 

(3.9) 

E{wGPS(t)} = 0 (3.10) 
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E{wGP5(*)w£FS(< + 7-)} 

0.5 0 0 0 0 0 0 

0     0.004 0 0 0 0 0 

0 0 0.004 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

ft2/sec-6(r) (3.11) 

Appendix A. 10 presents the state numbers and their descriptions. The noises used are pre- 

sented in Chapter IV. 

3.4.2 22-State GPS Model The 22-state model is very similar to the 30-state model. The 

difference between the two models is that the three directional error states in the 30-state model 

are combined into one line-of-sight error. The 22-state model is an experiment by this researcher. 

The model is a melding of the 10-state and 30-state models. Since the pseudorange comprises only 

one line-of-sight measurement, it seems reasonable that all of the satellite line-of-sight error can be 

represented in one state. Of course, the dynamics driving noise will be somewhat different, and the 

error variance used is just the sum of the three directional variances given in the 30-state model. 

The complete description of the 22-state model is presented in Appendix A.11. 

3.4.3 10-State GPS Model. The basis for this model was taken from the MSOFE GPS/INS 

integration sample problem (3). The model has not been used in past AFIT theses, but was used in 

the development of the MATLAB m-files used in this thesis (7). The model contains the receiver- 

related errors, such as user clock drift and receiver noises in the first two states. The remaining 

errors are the satellite-related (satellite clock and orbital ephemeris) and path-related (tropospheric 

and ionospheric delays) errors, which are lumped into the last eight states. The last eight states 

(two per each of four satellites) are simply pseudorange and pseudorange-rate error. 

3.4-4 2-State GPS Model. The 2-state filter is rather small when compared to the 30-state 

system truth model. A model reduction of this order is possible because of the size of the user 

clock bias and drift errors in comparison to the remaining states. The filter model is shown below: 
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SRclku 
= 

0    1 

0   0 

ÖRclku 

ÖDclku 
+ 

WRdk 

WRclk 

(3.12) 

Due to the filter order reduction, the dynamics driving noise, Q, must be increased to com- 

pensate for the added uncertainty in the model. Chapter 4 compares the various values of Q for 

the different models. 

3.4.5 GPS Measurement Model. Since four satellites are used in the computer simulation, 

there are four GPS measurement updates. The hardware integration uses up to eight satellites in 

view; therefore, the number of measurements depends upon the number of satellites being tracked by 

the GPS receiver. A subroutine was written to set the observation matrix to account for all available 

satellites. Mosle (18) was used as a reference for the GPS measurement model development. The 

pseudorange measurements received by the GPS receiver are differenced with the INS computed 

pseudorange to produce a difference measurement: 

SZGPS = RINS - RGPS (3.13) 

The pseudorange, RGPS > is the sum of the true range from the user to the satellite plus the 

errors. 

RGPS — Rt + $Rci + ÖRtrop + 6 Rio» + SRucik - SRscik - v (3.14) 

where: 

RGPS = GPS pseudorange measurement, from satellite to user 

Rt = true range, from satellite to user 

6Rci — range error due to code loop error 

SRtrop = range error due to tropospheric delay 

SRion = range error due to ionospheric delay 

8Ruc\k = range error due to user clock 

6R$dk = range error due to satellite clock 

v — zero-mean white Gaussian measurement noise 
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The INS-computed pseudorange measurement is found by differencing the satellite ECEF posi- 

tions from the ECEF position provided by the INS: 

RlNS = |XU — Xs | — 

r      i e - e 

Xix X, 

Vu - y> 

Zu Zs 

(3.15) 

The above equation can be written as: 

RINS - \/(xu ~ x*)2 + (Vu -Vs)2 + {zu - Zs)2 (3.16) 

Equation (3.16) can be approximated and rewritten in terms of the true range and a truncated 

first-order Taylor series with perturbations 5xu and Sx.s representing the errors in Xu and Xs: 

RlNS — Rt + 
dRiNs(Xs,Xu) 

dXu 
■SXU + 

9RlNs(Xs,Xu) 

(.•Ä-s ,A.U )n0 
dXs (XB|Xtt)reom 

■6XS       (3.17) 

The solution is found by substituting Equation (3.16) into Equation (3.17) and evaluating the 

partial derivatives: 

RINS = Rt 
xs     xu 

+ 

\RINS\ 

Xg       *i 

\RINS\ 

■6xu — 

■6xs + 

ys -yu 

\RINS\_ 

ys - Vu 

.\RINS\ 

6yu - 
Zs       Zu 

\RlNS\. 

Zs       Zu 

\RINS\. 

■6xu 

■8z. 

The GPS pseudorange truth model difference measurement is given by: 

(3.18) 

&zGps(true) — RINS - RGPS = - 

c        ,      «E.t       «E 
■ozu + 

.\RINS\ \R INS\ 

RINS 

■Sxs + 

■6x. - 
2/s       xu 

\RlNs\ 
•6xu 

ys -yu 
■6yu 

ys -yu 

Y\R 
■6ys + 

Zs      zu 

RlNS\ 

■6zs - dRci 
■INS\j l\RlNs\ 

dRtrop + dRsclk — dRuc}k — v (3.19) 
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The measurement noise present in the GPS difference measurement truth model represents 

sensor noise and modeling uncertainties. The statistical characterization of these noises are pre- 

sented in Chapter IV. 

The 2-state filter model GPS pseudorange difference measurement is written as: 

öZGPS = RINS - RGPS = - 
l\R ■INS\ 

■Sxu — 
Vs ~Vu 

\RINS\\ 
■6yu 

\RINS\.'
6ZU 

—dRuclk — v (3.20) 

Equations (3.19) and (3.20) differ in the omission of the system truth model atmospheric 

errors, satellite clock errors, and satellite position errors. The filter measurement noise variance, R, 

is tuned to compensate for the reduction in order from the truth model. The measurement noise 

statistics are given in Chapter 4 and compared to those used in the truth model. 

3.5    Chapter Summary 

This chapter has presented a general overview of the computer simulation employed and 

its relation to the actual hardware integration. In addition, the INS and GPS truth and filter models 

were presented. The system truth models were used in the computer simulation to represent the 

actual LN-94 and GPS receivers. The filter models were used in both the hardware integration 

and the computer simulation. The chapter concluded with the measurement equations necessary 

to update the EKF . 
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IV.   Results and Analysis 

This chapter presents the results of the GPS/INS integration research. The chapter 

is divided into two major sections: computer simulation and hardware integration. The chapter 

begins with the computer simulation results for a 69-state filter and the 13-state filter using the 

69-state system truth model. The filters were tuned with no knowledge of the hardware integration 

dynamic driving noise strength tuning values. After the hardware integration, the actual dynamic 

driving noise values were inserted into the simulation to demonstrate differences between the real 

world and simulation. A comparison of the actual tuning versus the simulation was accomplished. 

The discussion then moves to the collection and analysis of LN-94 and GPS receiver data. This 

data was used to illustrate the improvement in navigation positioning accuracy via the Kaiman 

filter. The next step was to present the results of combining the data with an EKF in a tightly- 

coupled integration. Five different GPS models were used in the filter to demonstrate variations 

in performance. The measurement update rate was then investigated to determine how much 

improvement in performance can be obtained by increasing the frequency of measurement updates. 

The final section of the chapter discusses the subject of feedback or closed-loop integration. The 

results of long term runs demonstrate when resetting the INS in a feedback implementation would 

be advantageous over a feedforward approach. 

4-1    Tuning 

Although there were several surprises, nearly every result in this research provides an 

outcome that one would expect, given the theory. Yet, these results are very dependent on tuning. 

It was an eye-opening experience for this researcher to learn the range of values that could be 

obtained by changing tuning of the dynamic driving noises and the sensor measurement noises. 

The EKF is very versatile and can be tuned for nearly any situation. The problem is that its 

performance may be excellent in the environment for which it is tuned, but it may be rather 

lacking if conditions change, such as a failure. 

Tuning for the computer simulation was very conservative in order to meet the criterion 

established in Section 2.4. The tilt error states were very difficult to tune. The tuning of the tilt 

error states was dependent on the tuning of nearly every other error state. In other words, tuning 
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of the clock bias error state or the latitude error state changed the performance of the tilt error 

states. All other error states could be tuned in a systematic fashion. 

Since this thesis strives to provide an unbiased report on the performance of the different 

niters, a groundwork for tuning was established. Once satisfactory filter performance was attained, 

the dynamic driving noise strengths for the INS error states were not changed. These values are 

shown later in Section 4.2, Table 4.1. Only the dynamic driving noises associated with the GPS 

states and the sensor measurement noises were altered to improve performance. Interestingly, the 

filter was remarkably robust and could be tuned for many different situations; however, there were 

trade-offs. For instance, if a long duration run was accomplished, then shorter term performance 

was sacrificed. In an extreme case, the filter could be tuned so that the models were discounted 

and essentially no more than the GPS solution was provided. In general, the shorter the tuning 

interval, the better the EKF can predict the navigation solution errors. Nonlinearities unmodeled 

by the linearized filter model become more significant as time passes. The superior short-term 

accuracy is because the INS modeling errors have not grown as large in the initial stages. 

The measurement update rate also had an effect on the tuning. Accuracy in filter estimates 

increased as the measurement update frequency increased. The accuracy increases only if the tuning 

values are changed to reflect the altered update rate. When the frequency of measurement updates 

increased, the filter propagated for a shorter period of time. Rather than decreasing the dynamic 

noise strengths on the model, the sensor measurement noise was increased. This method made 

tuning of the filter much easier. Only one value was varied versus changing the Q on each error 

state. The results of changing the measurement update frequencies is developed further in Section 

4.4.4. 

4-2    Computer Simulation 

This section presents the results of the integrated GPS/INS computer simulations. Two 

different sets of simulations were run; these simulations are categorized by the way they were tuned. 

The first section describes a GPS/INS integration simulation tuned with no knowledge of the actual 

hardware integration tuning results. The criterion used in tuning the filter is given in Chapter II. 

The second section uses the real data tuning values used in the actual hardware integration. Both 

categories of simulation analyzed the 69-state and 13-state filters. The truth model for the computer 
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simulations is composed of the 39-state LN-93 truth model given in Appendix A.7 and the 30-state 

GPS model appearing in Appendix A.10, which will be referred to throughout the text as the 

69-state model. 

All of the simulations are for tightly-coupled feedforward GPS/INS integrations. The simula- 

tions were set up to represent the hardware integration as closely as possible for later comparison. 

The initial conditions were the exact surveyed coordinates of the laboratory used in aligning the INS 

and the initial covariances for the EKF are given in Chapter 3. The simulations were run successfully 

using GPS pseudorange measurements only. Unlike past AFIT research (10, 11, 18, 20, 22, 27), 

no velocity aiding from perfect Doppler radar measurements was needed. Also the simulation 

deleted the barometric altimeter measurement because an actual altimeter is not available in the 

laboratory. All of the simulations were conducted using an AFIT-developed computer routine of 

MATLAB m-files; see Appendix J. The resulting plots are from a Monte Carlo analyses consisting 

of 10 runs. The measurement sample period was 20 seconds, which is the actual data collection 

frequency used in the hardware integration. The 20 second interval used in GPS data collection 

was to prevent data files from becoming large and unmanageable. 

4-2.1 Category I: Simulation Results. Simulations which were tuned with no knowledge of 

the actual hardware integration dynamic driving noise values are identified as Category I. Basically, 

the filter was tuned by adjusting the dynamic driving noise so that the mean ± one sigma of 

estimation error is contained within the envelope formed by the ± one filter-predicted sigmas. By 

using the dynamic driving noise, the filter could be tuned more precisely. The sensor measurement 

noise, R, has a general effect on the tuning of all error states and the initial covariances, PQ, only 

affect the initial transients. These values were established in past AFIT theses and were assumed 

applicable to this simulation (18, 20, 22, 27). Tables 4.1 through 4.4 provide the noise values and 

the plots are given in Appendices D and E. 

4-2.1.1 69-State Filter Model. This simulation compares a 69-state system truth 

model to the 69-state filter. The 69-state filter used in the first GPS/INS computer simulation is 

nearly the same model as the system truth model. The 69-state model is composed of the 30-state 

GPS and the 39-state INS models. The only difference between the system truth and the filter 

models is the dynamics driving noise strength values. A slight amount of noise was added to all of 
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Figure 4.1    Category I: Position Errors for the 69-State Filter Computer Simulation 

the error states in addition to the system truth noise, in order for the filter to follow the system 

truth model. The additional noise opened the bandwidth of the filter slightly to compensate for 

differences between the filter and system truth models caused by random number generation. 

The purposes of using a filter of the same order as the system truth model in a computer 

simulation are for comparison to the hardware integration and to provide a benchmark to compare 

performances of all reduced-order filters. In the hardware integration, the 69-state filter was chosen 

to investigate the adequacy of the 69-state system truth model. The 69-state filter will demonstrate 

how well the model emulates the errors of the real world INS and GPS systems. 

The latitude and longitude plots in Figure 4.1 show the position errors for the simulation. 

All of the 69-state filter model plots are given in Appendix D. In the plots, the solid line represents 
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Figure 4.2    Category I: Position Errors for the 13-State Filter Computer Simulation 

mean filter error, the dotted line is the actual mean error ± one sigma (one standard deviation), and 

the dashed line is the zero filter-predicted mean error ± one sigma. The filter was conservatively 

tuned in order to meet the criterion established in Section 2.4 and because of the difficulties posed 

by the tilt error states as discussed in Section 4.1. 

4-2.1.2 13-State Filter Model. The second Category I simulation used a 13-state 

filter model. This filter model is composed of the 11-state INS model and the two-state GPS model. 

Again, the 69-state model is used as the system truth model. Both of these models are described 

in Chapter III. The 13-state filter was chosen because of its probable use in a future real-time 

GPS/INS tightly-coupled integration. 
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As would be expected, the mean error ± one sigma and the zero ± one sigma filter-predicted 

errors are somewhat larger. This wider range of values represents greater error in the EKF esti- 

mates. The larger errors are because the number of filter states has been reduced from 69 to 13 

states and the amount of uncertainty in the model is therefore increased. 

The latitude and longitude plots are shown in Figure 4.2. All of the plots produced from the 

13-state filter 10-run Monte Carlo analysis are shown in Appendix E. 

4.2.2 Category II: Simulation Results. After the hardware integration was completed, the 

dynamic driving noise strength values from that integration were inserted back into the computer 

simulation filter models and a 10-run Monte Carlo analysis was run. The system truth model 

remained the same as in Category I, and the simulation initial conditions were unchanged. The only 

differences in the Category I and II simulations were the filter dynamic driving and sensor noises. A 

change in the filter tuning philosophy was required for the real data because the actual pseudoranges 

were much noisier than the computer simulation's representation. The EKF would rapidly diverge 

if the computer simulation sensor measurement noise strengths were used. The sensor measurement 

noises are given in Tables 4.2 and 4.4. Additional reasons for increasing the sensor measurement 

noise strengths were to compensate for user clock bias shifts (discussed in Appendix C.) and the 

substitution of satellites by the receiver. To explain the latter point, the GPS receiver is capable of 

receiving signals from eight different satellites. If another satellite appears in the receiver's field of 

view with a stronger signal, then the receiver will replace a previously used satellite with the more 

desirable one. By changing the sensor measurement noises in the real data scenario, the filter was 

tuned rather quickly and easily. When tuning with the dynamic driving noise strengths, each error 

state affected the model differently and tuning was tougher to accomplish. Although some dynamic 

driving noise strength tuning was accomplished, the sensor measurement noise strengths were used 

most often. In the use of real data, tuning was accomplished by determining which measurement 

noise strength values provided the best position estimates. The values are shown in Tables 4.1 

through 4.4 and the plots are provided in Appendices F and G. These results provide a basis for 

comparison of the actual hardware integration and simulation results. 

4-2.2.1    69-State Filter Model.       As expected, the 69-state model is not perfect.  If 

the 69-state model directly mirrored the real world, then the hardware integration tuning values 
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would have been relatively close to the those obtained in simulation only. Table 4.1 and Table 4.2 

show the differences in dynamic driving and sensor noise statistic values between Category I and 

II computer simulations. The most glaring differences in the Category I and Category II tuning 

values are the sensor and dynamic noises applied to the user clock states. The Category I values 

were very similar to values obtained in past AFIT research (18). The large difference in the clock 

states' dynamic driving noises and sensor noises could be that the models were developed for P-code 

receivers. Now that selective availability is a factor, the accuracy is certainly much less. Also, the 

real world clock is less accurate than had been expected. 

The altitude states' dynamic driving noise values show significant differences which require 

comment. Recall from Chapter I, the Assumptions stated that since no barometric altimeter was 

available in the laboratory, a barometric altimeter output would be simulated. In actuality, the 

surveyed altitude of the GPS receiver antenna was fed directly to the INS vertical channel states 

as the barometric altitude. This simulated input to the INS makes this portion of the hardware 

integration more unrealistic than the computer simulation. The vertical channel in the hardware 

integration under this circumstance is extremely accurate and thus the small values of Q. When 

AFIT moves to a mobile real-time system and determines a source of stabilizing the vertical channel, 

the Q values for the altitude states will most certainly increase. 

The dynamics driving noise values associated with the velocity states actually decreased. This 

reduction in uncertainty is associated with the stationary platform used in this research. Future 

AFIT systems will probably need the velocity error states' Q values increased to open up the filter 

for mobile scenarios. When an integrated navigation system is placed in a mobile environment, 

coefficients in the system truth model's system dynamics matrix, F, may have been ignored in the 

reduction to a 13-state filter. This filter order reduction in combination with a moving platform 

may dictate that more dynamic driving noise be added. 

The plots showing the results of using the actual tuning values in the 69-state filter are in 

Appendix F. The position error plots are shown in Figure 4.3. The filter-predicted one sigma values 

still bound the mean predicted error and the mean ± one sigma values; however, the filter-predicted 

one sigma values have grown from a steady-state value of approximately 25 ft to about 100 ft. 
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Table 4.1    Dynamic Driving Noise Values For 69-State Filter 

Element of Q Category I: 69-State Category II: 69-State 

(1,1) 1 x lO"15 1 x lO-15 

(2,2) 1 x 10-i& 1 x 10-1S> 

(3,3) 1 x 10~1& 1 x 10-ib 

(4,4) 9x 10-11 1 x lO"4 

(5,5) 9x 10-11 1 x 10-4 

(6,6) 9x 10-11 1 x 10-4 

(7J) 1 x lO"2 lx 10-' 
(8,8) 1 x lO-2 1 x 10-'' 
(9,9) 1 x 10"2 1 x 10-' 

(10,10) 200 1 x 10-b 

(11,11) 100 1 x 10~b 

(12,12) 150000 
(13,13) 1 x lO"3 10000 

(14,14) thru (41,41) 1 x lO-11 1 x 10~12 

(42,42) 1 x 10~b 1 x lO-9 

(43,43) 1 x 10-5 1 x 10-y 

(44,44) 1 x 10~b 1 x 10-y 

(45,45) 1 x 10-5 5 
(46,46) 1 x 10-* 5 
(47,47) 1 x lO-5 5 
(48,48) 1 x 10-" 5 
(49,49) 1 x lO-5 1 x 10~y 

(50,50) 1 x lO"5 1 x 10-y 

(51,51) 1 x 10~5 1 x 10-y 

(52,52) 1 x lO-5 5 
(53,53) 1 x 10-5 5 
(54,54) 1 x lO"5 5 
(55,55) 1 x lO"5 5 
(56,56) 1 x lO"5 1 x 10-y 

(57,57) 1 x lO"5 1 x 10-y 

(58,58) 1 x lO"5 1 x 10-y 

(59,59) 1 x lO"5 5 
(60,60) 1 x lO""5 5 
(61,61) 1 x lO-0 5 
(62,62) 1 x lO"5 5 
(63,63) 1 x 10~5 1 x 10-y 

(64,64) 1 x lO"5 1 x 10-y 

(65,65) 1 x 10-b 1 x 10~y 

(66,66) 1 x lO"5 5 
(67,67) 1 x 10-5 5 
(68,68) 1 x lO-5 5 
(69,69) 1 x lO"5 5 
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Table 4.2   Sensor Measurement Noise Values For 69-State Filter 

Element of R Cat I: 69-State Cat II: 69-State 

(1,1) 100 200000 

(2,2) 100 200000 
(3,3) 100 200000 

(4,4) 100 200000 

Table 4.3    Dynamic Driving Noise Values For 13-State Filter 

Element of Q Category I: 13-State Category II: 13-State 

(1,1) 5 x 10-1* 1 X 10-iö 

(2,2) 5 x 10-14 1 x 10-i!> 
(3,3) 5 x 10-14 1 x 10-lb 

(4,4) 9.52 x 10~12 1 x 10-4 

(5,5) 9.52 x 10~12 1 x 10-4 

(6,6) 9.52 x 10~12 1 x 10-4 

(7,7) 0.001 1 x 10-'' 
(8,8) 0.001 1 x 10-' 
(9,9) 0.0823 1 x 10-' 

(10,10) 200 1 x 10-b 

(11,11) 166.7 1 x 10-e 

(12,12) 1 150000 
(13,13) 1 x 10-3 10000 

4.2.2.2 13-State Filter Model. The 13-state filter model had results very similar to 

those of the 69-state model. Tables 4.3 and 4.4 presents the different values for the dynamic driving 

and the sensor noise strengths. 

Tables 4.2 and 4.4 show that the sensor noise variances decreased by a factor of two in going 

from the 69-state model to the 13-state model. The lower amount of sensor noise in the 13-state 

model indicates that the EKF is trusting the measurements for the reduced order 13-state model 

more in comparison to the 69-state model. The filter could also have been tuned by increasing the 

dynamics driving noise strength values for the 13-state model. 

Table 4.4    Sensor Measurement Noise Values For 13-State Filter 

Element of R Cat I: 13-State Cat II: 13-State 

(1,1) 100 100000 

(2,2) 100 100000 
(3,3) 100 100000 

(4,4) 100 100000 
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Figure 4.3    Category II: Position Errors for the 69-State Filter Computer Simulation 

The position plots for the Category II 13-state filter plots are shown in Figure 4.4.  All of 

these plots can be seen in Appendix G. 

4-3   Data Collection 

This section describes the position and velocity estimates of the LN-94 and the GPS 

receivers. A three-hour data set was collected for the INS. The three hours of data collection began 

after the INS alignment mode had been completed. Several sets of GPS data were taken for both 

the XR-4PC and XR-5PC over a span of several days. Representative sets are shown in this thesis. 

The individual subsystem position estimates are important to show the effectiveness of the Kaiman 

filter and its improvement in accuracy over either system alone. 
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Figure 4.4    Category II: Position Errors for the 13-State Filter Computer Simulation 

In order to compare each filter's performance against the others, a temporally averaged mean 

error was calculated. The temporally averaged mean error for latitude, longitude, and altitude 

was squared, summed together, and the square root was taken. This left a scalar term which was 

used to compare each filter's performance. The temporally averaged mean error was calculated 

for each of the five filters over the ten runs, and is displayed in Table 4.5. The average was taken 

over all time and the initial transients were included. This method was selected in anticipation 

of future implementation of a filter in the feedback implementation. The size and duration of the 

transients would be a factor in determining when the initial reset should take place. In addition, 

the temporally averaged mean errors for the XR-4PC and XR-5PC are shown. 
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4.3.1 LN-94 Data. Three hours of data was collected off of the 1553 data bus from the 

LN-94, after an initial alignment phase had been completed. The LN-94 has three alignment modes: 

gyrocompass alignment, stored heading alignment, and in-flight alignment. The alignment mode 

used in this particular research was the gyrocompass alignment mode. The gyrocompass alignment 

mode allows the INS to achieve the highest initial alignment accuracy of the three modes. Data 

was not taken until the gyrocompass align mode was complete. After one hour the LN-94 drifted 

approximately 0.84 nm. This is a relatively high drift, since the .8 nm/hr specification rate is the 

worst case for an operational system; however, this particular LN-94 has undergone no calibration 

or maintenance in over four years. Thus a relatively high drift rate is expected. 

The complete three-hour data plot is shown in this section to illustrate the low frequency error 

characteristics of inertial navigation systems. The sinusoid riding the sloping curve is actually the 

Schüler oscillation. The Schüler Frequency has a period of approximately 84 minutes. The LN-94 

output is also modulated by the Earth and Foucault rates. Since these rates have much larger 

periods, a longer data set would be necessary to see their effects. 

Figure 4.5 clearly illustrates the need for GPS updates to the INS, especially in missions of 

longer durations. The average temporal error for the INS over the 1000 second interval was 1415.2 

feet. All of the INS plots are shown in Appendix H. 

4.3.2 XR-4PC Data. The XR-4PC is a two-channel receiver and can only receive C/A 

code; therefore, selective availability degrades the navigation performance. Five sets of data were 

taken over a three day period for the XR-4PC; Figure 4.6 shows the mean ± one sigma for position. 

All five XR-4PC data sets used seven to eight satellites in computing a position estimate. 

The positions were found by using the batch least squares method described in Chapter II. The 

temporally averaged statistic error for the five sets of XR-4PC data was 252.42 feet. 

4-3.3 XR-5PC Data. The XR-5PC is a six-channel receiver and is also subject to selective 

availability. Five sets of data were also taken for the XR-5PC; the data was taken at different hours 

over a four day period. The mean ± one sigma deviations of position are shown in Figure 4.7. 

The six-channel XR-5PC receiver is much quicker than the two-channel XR-4PC in acquiring 

satellites for positioning. Also the position estimates are much smoother than those produced by 

the XR-4PC, yet the same method is used to calculate a GPS-only solution, the batch least squares. 
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Figure 4.5    LN-94 Position Errors 

The accuracy of the XR-5PC was poorer than the XR-4PC; the temporally averaged statistic error 

was 318.34 feet. The XR-5PC locked up only five to seven satellites in the five data sets collected. 

The algorithms used within the two receivers are most certainly different. It seems the two-channel 

XR-4PC cycles through all available satellites, while the manufacturer, NAVSTAR, chose to allow 

the six-channel, XR-5PC, to dedicate channels to satellites. 

44    GPS/INS Integration 

This section divides the results into three categories: a comparison of the actual results 

to the various simulations, a comparison of the five different filters, and the performance of the 

EKF in determining the position versus the individual system's estimates. 
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Figure 4.6    XR-4PC Position Errors 

4-4-1 Comparison of Actual Results to the Simulations. The following section shows the 

results of the hardware integration. A total often feedforward tightly-coupled GPS/INS integration 

runs were accomplished using the five data sets of XR-4PC data and the other five files collected 

from the XR-5PC. The mean and one sigma deviations were computed for these ten data sets and 

the results are plotted in Figures 4.8 and 4.9 for both the 69-state and 13-state filters. The tuning 

values were presented in Tables 4.1 through 4.4; all tuning parameters are Category II. When the 

Category I tuning values were used in the hardware integration, the EKF gave divergent results. 

The 69-state filter Category I computer simulation produced a mean of zero with a mean 

±10 feet in the latitude and ±40 feet in the longitude. The Category II simulation was similar to 

Category I except the filter predicted ±sigma went from 25 feet to nearly 100 feet. The hardware 

integration results showed that, after the 100 second point, the mean is no longer zero as with the 
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Figure 4.7   XR-5PC Position Errors 

simulations. This drifting from zero error indicates that the 69-state filter is no longer modeling 

the actual errors correctly. The 69-state errors are possibly a result of modeling the nonlinear error 

characteristics of the actual hardware with a linear model. The mean isigma is 150 feet in the 

latitude and 100 feet in the longitude. The longitude mean ±sigma envelope remains very constant 

but the latitude seems to be growing. In any event, both computer simulation results are much 

more optimistic than the hardware results. 

The Category II simulation results for the 13-state filter are much closer to the real data 

results. The 13-state filter results are very nearly the same as those of the 69-state filter. The 

major difference is the transient in the altitude error. In fact, the latitude errors for the 13-state 

filter are closer to zero mean and have a smaller mean ±sigma envelope than the 69-state filter. 
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Figure 4.8    EKF Position Errors Using the 69-State Filter 

This difference may indicate a tuning problem that is yet to be resolved. The longitude plots are 

nearly the same. 

4-4-2    Comparison Of the 69-State, 61-State, 49-State, 41-State, and 13-State Filter Models. 

One objective of this thesis was to determine the accuracy of various GPS models and collect 

data for analysis. Issues to be resolved were (1) which models would be best for use in the system 

truth model and (2) how much degradation occurred in reducing the model for use in the filter. 

The analysis was conducted by using the five sets of data collected from the XR-4PC and 

the first 1000 seconds of the LN-94 data. There were five different filters used. For purposes of 

comparison, the 39-state INS error model was used in four of the filters to reduce errors. The 11- 

state INS model was used in the 13-state filter because this will most likely be the filter employed 
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Figure 4.9    EKF Position Errors Using the 13-State Filter 

in a real-time application. The 69-state model contains the 30-state GPS model, which is the one 

used by AFIT in past research (18). The 61-state model contains a reduced order version of the 

30-state model. This 61-state model is reduced by eight states by combining the three line-of-sight 

errors for each satellite into one error. This reasoning is justified since the pseudorange is taken 

in one line-of-sight vector and not broken into three. The third GPS filter is the 49-state model. 

The 10-state GPS model was taken from the MSOFE example problem (3) and combined with 

the 39-state INS model (3). The 41-state model has only two GPS states: the user clock bias and 

drift. The final filter is the 13-state filter, which also only contains two GPS states (18). Table 4.5 

presents a comparison of the five filters' performance. 

Surprisingly, the 69-state model did not perform as well as the 61-state and 49-state models. 

Although the 61-state model had the lowest error over the five runs, it would seem that the 49- 
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Table 4.5    Filter Comparison 

Filter Temporally Averaged Mean Error (ft) 

69-state 118.17 
61-state 112.94 
49-state 117.27 
41-state 137.54 
13-state 140.37 
XR-4PC (only) 252.42 
XR-5PC (only) 318.34 

state model may be the best choice for the system truth model. The 49-state model carries less 

of a computational burden due to its reduced number of states, but still maintains a comparable 

accuracy with the 61-state model. 

Another interesting result was that the temporally averaged mean error statistic between the 

41-state and 13-state models was only three feet. The only difference between these two filters was 

the INS models (39-state versus 11-state). This would indicate that the INS model used in the 

13-state filter is nearly as accurate under the stationary short-term circumstance as the 39-state 

model. 

As discussed earlier, tuning is critical to performance. In order to accomplish as fair an 

evaluation as possible, the 69-, 61-, 49-, and 41-state models all used the same dynamic driving 

noise values for the INS error states and sensor measurement noise. These values are shown in Table 

4.1 and 4.2. The GPS dynamic driving noise values are given in Table 4.6 for future reference. The 

elements of Q given in Table 4.6 are shown in detail in Appendix A. Different tuning values will 

obviously change the temporally averaged mean errors shown in Table 4.5. 

4-4-3 EKF Results Versus Individual Systems. The performance of the EKF in com- 

parison to the individual INS and GPS systems definitely proves its worth. Table 4.5 shows the 

temporally averaged mean errors of the individual systems and each of the five filters used in the 

EKF. After 1000 seconds the bare INS has drifted nearly 1000 feet in both the latitudinal and 

longitudinal directions. The XR-4PC and XR-5PC had temporally averaged mean errors of 252.42 

feet and 318.34 feet respectively. The EKF greatly reduced the error in the navigation position 

estimates.  The 13-state filter had the worst results of the five filters (temporally averaged mean 
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Table 4.6    Filter GPS States Tuning Values 

Element of Q 69-State 61-State 49-State 
(42,42) 1 x 10~y 1 x 10~y 12 
(43,43) 1 x 10~a 1 x 10-y 1 x 10-y 

(44,44) 1 x 10-y 1 x 10-y 12 
(45,45) 5 5 1 x 10~1U 

(46,46) 5 15 12 
(47,47) 5 lxl0-y 1 x 10-1U 

(48,48) 5 1 x 10-y 12 
(49,49) 1 x 10-a 1 x 10-y 1 x 10-1U 

(50,50) 1 x 10-y 15 N/A 
(51,51) 1 x 10-y 5 N/A 
(52,52) 5 1 x 10-y N/A 
(53,53) 5 1 x 10-y N/A 
(54,54) 5 1 x 10~y N/A 
(55,55) 5 5 N/A 
(56,56) 1 x 10-y 15 N/A 
(57,57) 1 x 10~y 1 x 10-y N/A 
(58,58) 1 x 10-y 1 x 10-y N/A 
(59,59) 5 1 x 10-y N/A 
(60,60) 5 5 N/A 
(61,61) 5 15 N/A 
(62,62) 5 N/A N/A 
(63,63) 1 x 10~y N/A N/A 
(64,64) 1 x 10-y N/A N/A 
(65,65) lxlO-9 N/A N/A 
(66,66) 5 N/A N/A 
(67,67) 5 N/A N/A 
(68,68) 5 N/A N/A 
(69,69) 5 N/A N/A 

error of 140.37ft) and was still much better than the GPS or INS alone. In order to illustrate the 

smoothing effect that the EKF has on the position estimates, Figures 4.10 and 4.11 are included. 

After an initial transient, the residuals for the hardware integration, (both 69-state filter and 

13-state filter), nearly all fell within a ±400 foot envelope after steady state had been reached. 

Figures 4.12 and 4.13 present seven sets of residuals plotted during one 1000 second run. Figure 

4.12 shows the residuals and covariance of the residuals, while 4.13 is just rescaled to show the 

residuals. The statistics showing the mean and covariance of the residuals for all ten runs could 

not be easily plotted, because of the shifting of satellites during runs. Also, there were over twenty 

different satellites used in the data sets. Some were only used for portions of a data set, while data 

from others were used in some extent in up to five runs. Luckily, the satellites used in Figures 4.12 
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Figure 4.10    INS, GPS, and EKF Latitude Errors Using the 13-State Filter 

and 4.13 did not change during the 1000 second interval. The large covariance of residuals, shown 

in Figure 4.12, was required because of the satellite clock bias shifts and changing satellites. The 

significantly larger values of sensor measurement noise strengths, shown in Tables 4.2 and 4.4, were 

required to make the filter more robust. When sensor measurement noises were decreased below 

those given in Tables 4.2 and 4.4, only data sets with no user clock bias shifts or satellite changes 

could be used in the EKF. 

An observation was made during data collection that at random intervals the GPS receiver 

clocks applied a bias to the pseudoranges. The bias was consistent among all satellites at the same 

instant. The EKF could handle nearly all of these bias shifts. The point in time where the bias 

occurred could not even be seen in the position outputs. The only place the jumps were evident was 

in the residuals. A large spike would occur and then the EKF residuals would return to steady-state 

values within three measurement updates. Plots and research data are given in detail in Appendix 
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Figure 4.11    INS, GPS, and EKF Longitude Errors Using the 13-State Filter 

I.   The clock shifts were more noticeable in the XR-4PC than in the XR-5PC. Clock differences 

may be one reason that the XR-5PC outputs seem smoother than those of the XR-4PC. 

The dynamic driving noise values associated with the user clock bias and drift states had the 

most impact on the residuals. The sensor measurement noise variance also had an impact on the 

residuals. Tuning of the dynamic driving noise for the clock bias and sensor measurement noises 

changed the spread of the residuals, and the dynamic driving noise for the clock drift determined 

how quickly the residuals reached steady-state. 

4-4-4 Effects of Measurement Update Rate On Position Estimates. AFIT's future real- 

time EKF will be much more sensitive to update rates than for this research. The computational 

capacity will be limited and the timing intervals more critical. The mobile system will employ a 

486/33MHz laptop computer, while the hardware integration for this research has been conducted 
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Figure 4.12     Seven Residuals And Covariances of Residuals of the 69-State Filter During A 1000 
Second Run 

on a Sun Sparc20 workstation. The measurement update rate for all data taken thus far has been 

once every 20 seconds. A study was accomplished to determine the effects that the update rate 

has on the position estimates. By taking measurements at a higher frequency, the Kaiman filter 

has less time to propagate before the next update. While a greater frequency of updates should 

improve accuracy, it most certainly will increase computation time. 

In order to determine how much accuracy could be gained, the measurement update periods 

were halved from 20 seconds to 10 seconds. The 13-state filter was used for this study and a data set 

was collected from the XR-4PC. As with all of the previous integrations in this research, the filter 

was tuned for a 1000 second interval. The filter was tuned for 1000 seconds because this was the 

length of the GPS/INS integration run used in the research. Interestingly, there was a significant 
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Figure 4.13    Seven Residuals of the 69-State Filter During A 1000 Second Run 

difference in tuning values between the 20-second and 10-second measurement update GPS/INS 

integrations. The system using 20-second updates had the same tuning values as were previously 

given in Tables 4.3 and 4.4. The system employing the 10-second measurement updates had the 

same dynamic driving noise strength values, Q; however, the sensor noise, R, changed drastically. 

The optimum filter performance was found by increasing R from 100,000 to 500,000. The dynamic 

driving noise strength, Q, is the actual value tuned. The discrete value of Q, Qd, is calculated in the 

MATSOFE algorithms. The sensor and dynmamic driving noise strengths should not change as the 

measurement update periods are decreased or increased. Figures 4.13 and 4.14, show the residuals 

for the seven different satellites during the run and the covariance of the residuals. The required 

increase in sensor noise strength for the filter employing the 10 second measurement update period 

may be due to the satellite change at 250 seconds and the clock bias shift at 790 seconds. Table 
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Figure 4.14     Residuals and Covariances of Residuals For The 10 Second Measurement Update 
Period 

4.7 presents the results. The results permit this researcher to believe that the increase in accuracy 

is not worth the greater computational burden placed upon the filter. However, this is one decision 

the developer of a GPS/INS system must make and is contingent upon the situation. 

Table 4.7    Comparison of Measurement Update Rates 

Parameter 20 sec 10 sec GPS-only solution 

Latitude 41.80 21.0818 162.38 
Longitude 91.31 81.27 161.98 
Altitude 42.10 51.66 7 128.49 
Temporally Averaged Error 108.89 98.58 262.90 

4-4-5 Preliminary Results For Use In Implementing a Feedback GPS/INS Integration. 

As previously stated, this research is the first in a series of topics aimed at developing a mobile 

real-time integrated GPS-INS navigation system at AFIT. One topic of particular interest is the 

advantages and disadvantages of feedback versus feedforward approaches. The theory for these 

EKF implementations is given in Chapter II. AFIT research has primarily concentrated on the 

feedforward approach, even with its known drawbacks. The main reason for this is that the feed- 

forward allows the data to be collected from individual subsystems and then post-processed as is 
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Figure 4.15     Residuals and Covariances of Residuals For The 20 Second Measurement Update 
Period 

done with CIGTF's Navigation Reference System or in this thesis. The feedforward approach is 

also known as an open-loop system; thus if the EKF has a failure of some sort the INS outputs 

are not affected. In an indirect feedback system or closed-loop system, the INS is reset periodically 

by the EKF. Because of the drift characteristics of the INS, resetting the INS periodically should 

greatly improve results, as long as the resets are not grossly inaccurate. 

The filter can be tuned for different intervals. For intervals of short duration, the filters can 

be tuned to rely heavily on the model because it still closely approximates the INS errors. As the 

interval grows and the INS drifts further away from the actual point, the EKF can be tuned to 

maintain a certain level of accuracy. The EKF may be less accurate over the beginning of the 

interval but throughout the whole length of the run the position estimates are better. The sensor 

noise is decreased to rely more and more on the measurements rather than the model. However, 

eventually performance will be degraded to nothing more than the GPS-only solution. In the scalar 

case, the Q<j/R- ratio is important for establishing gain. When tuning the filter, the reduction in 

sensor noise is not saying that the sensor measurements have become more accurate; the dynamic 

driving noise could have been increased. 
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Figure 4.16    EKF Position Errors Using the 13-State Filter (First 200 seconds of Fig. 4.9) 

The first 200 seconds of Figure 4.9 are shown in the following plots. The filter of Figure 4.16 

was tuned for the specific interval of 1000 seconds to produce the best possible results. In Figure 

4.16, the EKF update of the longitude error begins to have less of an impact at the 100 second 

point, and the plot seems to begin divergence. These plots would indicate resetting the latitude 

and longitude positions of the INS at least every 100 seconds, if not more often. The accuracy 

attained by moving to a feedback implementation is much greater. For the ten runs the mean error 

± one standard deviation after the first 100 seconds of the run is no more than 50 feet in both 

latitude and longitude. 

An interesting result was found when trying to determine where feedback surpassed feedfor- 

ward results. A three-hour run was conducted with LN-94 and XR-4PC data. The XR-4PC data 

was actually a one-hour file duplicated three times for the EKF. Evidence of this tripling of the 
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data file can be seen in Figure 4.17 by the short spikes in the latitude and longitude plots. The 

LN-94 data is shown in Appendix H. The 1000-second duration tuning values were used for both 

the 69- and 13-state filters. The results of these runs are shown in Figures 4.17 and 4.18. 
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Figure 4.17   Three Hour Run EKF Position Errors Using the 69-State Filter 

Oddly enough, the 13-state filter when tuned for 1000 second runs outperformed the 69-state 

filter. The temporally averaged mean error for the 13-state filter was 378.54 feet, while the 69-state 

filter had a temporally averaged mean error of 677.07 feet. The assumption was made that, if 

tuned for the three-hour run, the 69-state model would outperform the 13-state filter. This was 

not to be the case. The 69-state filter sensor measurement noise variance was lowered to 100 and 

the temporally averaged mean error was only decreased to 424.65 feet. This situation seems to 

be one where the INS errors in the long term are overmodeled with the 39-state INS model. In 

the 13-state model there is more uncertainty and therefore, more dynamic driving noise added to 
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Figure 4.18   Three Hour Run EKF Position Errors Using the 13-State Filter 

the filter. This additional noise allows the filter flexibility in following unmodeled errors. The 

possibility exists that over longer periods of time the 39-state filter misrepresents some of the INS 

errors and cannot compensate for the actual errors as well as the 13-state filter. The temporally 

averaged mean error for the GPS-only solution is 267.78 feet; therefore the 69-state filter could not 

even be tuned to outperform the GPS. As the sensor noise variance neared perfect measurement 

values the estimates should mirror those of the GPS receiver. 

Table 4.8 shows the results for the integration of an LN-94 and an XR-4PC tuned for a 1000 

second run. Table 4.8 and Figures 4.17 and 4.18 illustrate where the 69- and 13-state models break 

down. The longitude slowly slopes off and after one hour the 13-state provides better position 

estimates than the 69-state filter. The residuals and covariances of the residuals for the three 

hour run are shown in Figures 4.20 and 4.21 for the 69-state and 13-state filters respectively. The 
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Figure 4.19    EKF Position Errors Using the 69-State Filter (Tuned for Three Hour Run) 

sharp spikes at the 3600 second and 6800 second points are from the splicing of the data sets; the 

remaining spikes are from receiver clock bias shifts. 

Table 4.8   Temporal Errors At Specific Times During a Three Hour Run 

Filter 1000 sec 1 hour 2 hour 3 hour 

69-State 100.38 ft 213.09 ft 415.98 ft 677.07 ft 
13-State 108.89 ft 227.95 ft 326.04 ft 378.54 ft 

4-5    Summary 

This chapter was filled with a number of tables, filters and results from this research. For 

clarity, the following list summarizes these results. 
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Figure 4.20    Residuals and Covariances of Residuals for the 69-State Filter 

1. Computer Simulation: An alternative to MSOFE was developed for the purpose of simulating 

GPS/INS integrations. The simulation, MATSOFE, is easier from a developer's standpoint 

(7). Troubleshooting, model insertion, and plotting results were all advantages of MATSOFE. 

The major drawback to MATSOFE is computation speed. This slower computation time was 

not a detriment in this research because the measurement updates were accomplished once 

every 20 seconds. The update rate is the Achilles' heel of MATSOFE. MATSOFE slows 

down significantly as the measurement update rate is increased. MATSOFE is slow because 

MATLAB is not a compiled language. 

2. Computer Simulation: The computer simulation did not require perfect Doppler radar mea- 

surements, as was necessary in past AFIT research (10, 18, 20, 22, 27). 
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Figure 4.21    Residuals and Covariances of Residuals for the 13-State Filter 

3. Computer Simulation: Simulations were run for 69-state and 13-state filters which were tuned 

with no knowledge of the hardware integration and then run again with the actual hardware 

integration tuning values. These results showed that there are differences between the real 

world GPS and INS systems and the simulations. For the most part, the simulations produced 

more optimistic results than the actual integration. 

4. Models: The user clock bias and drift states in the GPS models were capable of being tuned 

to much smaller values in simulation (4 orders of magnitude) than is possible in real life. In 

fact, when the minute dynamic driving noise strength values determined from the simulation 

were placed into the actual GPS/INS integrated system, the filter would not even track. 
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5. Models: The 61-state filter was found to be the most accurate in the GPS/INS integrations. 

However, with only a slight loss in accuracy, the 49-state did remarkably well with 12 less 

states. 

6. Models: The 41-state and 13-state filters were only three feet apart in temporally averaged 

mean error, yet the 41-state filter had 28 more INS error states. 

7. Models: The 13-state filter had a large initial transient, most likely due to the reduction 

in vertical channel states, because the transient was not present in the 69-state filter. This 

transient died out after four to five updates. 

8. Hardware Integration: The MATSOFE computer simulation was successfully modified to 

accept real data. These MATLAB m-files will now conduct a tightly-coupled GPS/INS inte- 

gration in a post-processing environment. 

9. Hardware Integration: Tuning is crucial. Nearly all of these results were tuned for a 20 

second update period and a 1000 second time span. The EKF can be tuned for nearly any 

interval with varying results. For instance, when tuned for a shorter interval of time, the filter 

predictions are more accurate during that interval. As the interval increases, the nonlinearities 

due to inefficiencies in the model become more prevalent. The appropriate tuning then shifts 

the weighting toward the sensor measurements and away from the model. 

10. Hardware Integration: A measurement update period of 10 seconds was 10 feet better in 

temporally averaged mean error over a 20 second update period; however, the 10 second 

update period is nearly twice as slow in computation. 

11. Hardware Integration: The GPS/INS integration using the 13-state filter had the poorest 

results of the filters studied, yet even this filter was nearly twice as accurate as either GPS 

receiver alone and many times better than the INS alone. 

12. Hardware Integration: Filters tuned for a 1000 second run and observed over a three-hour 

period revealed that the 13-state outperformed the 69-state filter. The 69-state filter model 

could not be tuned to provide a more accurate position estimate than the 13-state filter. 

These results suggest that the 69-state filter may be overmodeled for longer duration runs. 
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V.   Conclusions and Recommendations 

This chapter is divided into two sections: conclusions drawn from the results presented 

in Chapter 4 and recommendations for future AFIT research. The conclusions section generalizes 

the results of the computer simulation, the model analysis, and the hardware integration. The 

recommendations section points out potential problem areas identified in the research, provides 

suggestions to remedy these shortcomings, and recommends future topics to be included in future 

AFIT theses. 

5.1    Conclusions 

Several conclusions resulted from the research presented in Chapter IV. First, the com- 

puter simulations used at AFIT produce better position results than can be realized in the hardware 

integration of a tightly-coupled GPS and INS. The GPS and INS system truth models closely rep- 

resent the system errors but, as expected, are not perfect. The deviations of the system truth 

models from the real world produce the errors in the computer simulations. When tuning future 

simulations, researchers should keep in mind that the user clock and drift states' dynamic driving 

noise strength values are very large in reality. 

Five different filter models were evaluated in the hardware integration. The research deter- 

mined that the current 69-state system truth model does not follow the actual errors as well as 

some of the other filters. The 61-state model represented the errors of the integrated system slightly 

better than the 69-state model. The 49-state model also outperformed the 69-state model and is 

obviously less burdensome to the computer simulation due to its reduced number of states. 

The feedforward implementation provided very good results. The 13-state filter compared 

well to the larger state-dimensioned filters by providing slightly less accuracy at a fraction of the 

computation time for runs less than one hour. In addition, the 13-state filter outperformed the 69- 

state filter in runs exceeding one hour, which may indicate that the 69-state filter system overmodels 

the integrated system for longer term simulations. Tuning was critical in the accuracy of various 

filter models. The 13-state filter used in a feedforward implementation could be used to provide 

improved navigation performance in runs lasting up to three hours; however, the filter follows the 

latitude and longitude errors of the actual system best during the first 100 seconds of a run. The 

stabilization of the vertical channel in the INS prevents drifting. 
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Accuracy was improved by increasing the measurement update frequency from one update 

every 20 seconds to an update every 10 seconds. The temporally averaged mean error of the position 

estimate was reduced by 10 feet. With the computation power currently available at AFIT, this 

increase in update frequency will not prevent the implementation of a mobile GPS/INS integrated 

system. Computations on the 486 laptop computer with any of the filter models are possible with 

a real-time scenario at a 10-second update period with the advantage of improved performance. 

If an even greater measurement update frequency is required, then only the 13-state filter can be 

used in the integration due to computational restraints. 

5.2    Recommendations 

The following section provides this researcher's recommendations for future AFIT research 

topics, enhancements to the MatSOFE subroutines, and requirements to accomplishing the real- 

time integrated GPS/INS system. 

5.2.1 Remodeling the User Clock and Drift States. In order to produce more realistic 

results, one could add more system truth noise strength to the user clock and drift states. In the 

current simulation system truth model, no system truth model noise is added to the user clock error 

states. The additional system truth model noise may help the simulations provide more realistic 

results. By adding system truth noise to the model, the filter dynamic driving noise must increase 

in magnitude. 

5.2.2 Establishing the Size of the Observation Matrix. In order for AFIT to develop a 

real-time system, several issues must be resolved. The first issue is determining the order of the 

observation matrix, H, in the EKF. Currently, the subroutines read in the number of satellites in 

view and establish the size of the H matrix. The problem is created when the number of satellites 

changes during a run. The number of satellites will change several times during a one-hour run. 

In its current configuration, this fluctuating size of the H matrix causes an error in the routine: 

this is a coding error, not a conceptual error. All data files used in this research were 1000-second 

excerpts of longer data files. These 1000-second interval data files contained the same number of 

satellites throughout the duration of the run. 
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Two options exist for solving this problem. The easiest of these options is to set the obser- 

vation matrix to accept a fixed number of satellites; either four or five satellites is realistic. All of 

the collected data had as a minimum five satellites and usually seven satellites were tracked. The 

benefit of this option is that longer portions of the data files could be more easily fed into the EKF. 

The drawback is that the fewer satellites, the higher the GDOP, and the less accurate the solutions. 

Although the algorithm may be simpler, this method throws out data and is not as desirable as the 

second option. During the run an algorithm could be written to select the satellites which provide 

the best GDOP. In those rare cases when there were less satellites than the preselected number, 

the algorithm could propagate the error states until another measurement update is possible. 

Another option would be to change the m-files to accept all satellites in view. This option 

would be difficult to implement but would provide the best possible GDOPs available. In order 

to implement the second option in a real-time scenario, the EKF could be reset each time the 

number of satellites in view changes. In other words, every time the number of satellites changes 

the algorithm would readjust the matrix sizes. This adjustment would set the covariances back to 

their initial values and the H matrix could be reinitialized. The major disadvantage of this option 

is the initial transients present in the altitude states of the 13-state filter. Each time the satellite 

number changed and the EKF restarted, the transients would appear in the altitude estimates. 

This varying order of the H matrix would also present problems in the output of the residuals. For 

instance, some intervals of the run would have five sets of residuals, others six sets, and still yet 

some would have seven. This varying number of outputs would be difficult to output. 

5.2.3 User Clock Biases. As mentioned in Chapter IV, the XR-4PC had noticeable jumps 

in the user clock. These jumps were rather commonplace in occurrence, but their magnitudes varied 

rather drastically. Of course, these biases can be counteracted by increasing the Q in the clock 

bias and drift states. Since the jumps were not noticed in the XR-5PC data, this indicates there 

will be different sets of tuning values for each respective receiver. Further study is required, but it 

is very possible that a common GPS model is not possible. Just as various inertial systems have 

different truth models, the same would be expected with GPS receivers. In a GPS truth model, the 

satellite-related errors will be the same throughout all of the models. But as was demonstrated in 

this thesis, the user clock is a critical error state that will vary between GPS receiver models and 

quite possibly from receivers of the same type. 
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5.2.4 Access to Real-Time GPS Raw Data. In order to implement a real-time and mobile 

integrated GPS/INS system, a method of obtaining the necessary information from the XR-4PC 

or XR-5PC must be devised. Currently, the GPS receivers in the laboratory will only write data 

to a file. In order for this information to be useful in integrating a GPS and INS in real-time, the 

GPS receivers must transmit the satellite ephemeris and pseudorange information over some sort 

of data bus. The LN-94 INS uses the 1553 data bus. 

5.2.5 Real-Time Kaiman Filtering. Several of the Kaiman filtering equations in the 

MATSOFE routines must be rewritten into the C programming language for the data bus controller. 

If this rehosting of the equations is accomplished, then real-time Kaiman filtering can be done on 

the computer acting as the controller for the LN-94. The LN-94 passes information and accepts 

data over the 1553 data bus. The software which interfaces the 1553 data bus with the PC is known 

as DT-1120. The DT-1120 software can call out the user's subroutines written in C. Therefore, in 

a feedback implementation, the data monitor would read the LN-94's output file just as was done 

in this thesis. The DT-1120 software would then call out the Kaiman filtering subroutines. The 

new position estimates would be sent to the screen or an output file. At a predetermined interval, 

the DT-1120 software would also send resets back to the INS from the EKF produced estimates. 

The 

5.2.6 Real-Time Filter Model. As discussed in Chapter 4, the 13-state filter had a large 

initial transient in the vertical channel. Instead of the 13-state filter model used in this research, a 

filter of increased order may produce better results. By adding more vertical channel states to the 

filter, the transient magnitude may be diminished. Recall that the filter models using the 39-state 

INS models did not exhibit altitude-related transients. 

5.2.7 Research Topics. Several recommended research topics come to mind for future 

AFIT students in order to accomplish the goal of a mobile real-time system. As a first step, 

a loosely-coupled GPS/INS integration could be attempted and compared to the tightly-coupled 

results of this thesis. Once the appropriate models are determined, the conversion of MATSOFE to 

accomplish a loosely-coupled integration should not be difficult. If the instability dilemma of filters 

driving filters can be resolved, a loosely-coupled integration may be more desirable for a real-time 

GPS/INS integration.   A loosely-coupled system would seemingly require less computation time 
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in the EKF software; the satellite ECEF position computations would not be required. However, 

these satellite ECEF computations must still be accomplished in the GPS receiver's software. 

Another important step toward a mobile GPS/INS integration is to conduct a real-time 

feedback integration of the GPS and INS. This research should concentrate on how often the INS 

must be reset and an analysis of the results versus the feedforward approach. From Figure 4.13, it 

would seem that the feedback implementation will provide much better position estimates and the 

INS will only be required to be reset every 100 to 200 seconds. Of course, the actual reset times 

will be contingent upon the position accuracies required from the integrated system. The type 

of integration would be a combination of the feedforward and feedback approaches discussed in 

Chapter 1 and shown in Figures 1.1 and 1.2. The feedback approach shown in Figure 1.2 resets the 

INS each time the EKF sends a new position estimate. The hybrid integration scheme in Figure 5.1 

operates as a feedforward implementation and occasionally sends a reset to the INS in a feedback 

approach. 
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Position, Velocity, 

and Attitude 

Estimates of Position, 

Velocity and Attitude Errors 

Inertial 
Navigation 
System 
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/ 
Extended 
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Inertial System Errors 1 \ 
Global 

System 
6 

Figure 5.1    EKF Feedback Implementation for a GPS/INS Integration 

A final area of recommended study is fault detection, isolation, and recovery (FDIR). FDIR 

studies have been conducted in simulation at AFIT (18, 27). FDIR research on the actual hardware 

integration should be conducted. This analysis could be conducted with the data files used in 

this research. Since the computations are done in a post-processing environment, the individual 

segments of the data files can be altered to induce failures. This research would mainly concentrate 

on satellite failures, but INS inconsistencies could also be induced. 
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Another area of concern in industry today is the incorrect resetting of the INS in a feedback 

configuration. The scheme illustrated in Figure 5.1 could be used to aid in developing an FDIR 

algorithm. The GPS-only and INS-only solutions could be compared to identify incorrect position 

estimates. The INS-only output would not be available in a true feedback configuration as shown 

in Figure 1.2, but would be available in Figure 5.1. Of course several factors would affect the results 

such as: tuning, interval of INS resets, measurement update rate, GPS satellite health word and 

the severity of vehicle dynamics. 

5.3   Summary 

Hopefully, the results of this research and the recommendations provided in this research 

will assist the AFIT Navigation, Guidance, and Control section in attaining its goal of developing 

a real-time integrated system. This chapter has presented the conclusions and recommendations 

culminating from this research. 
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Appendix A.   Error State Models Definitions 

This appendix contains tabular listings of the 93-state, 39-state, 11-state LN-93 INS 

models, and the 30-state, and 22-state GPS models. 

Table A.l    93-state LN-93 INS Model, Category I: General Errors 

State 
Number 

State 
Symbol 

Definition 

1 sex X component of vector angle from true to computer frame 
2 6@Y Y component of vector angle from true to computer frame 
3 6GZ Z component of vector angle from true to computer frame 
4 <t>x X component of vector angle from true to platform frame 
5 <t>Y Y component of vector angle from true to platform frame 
6 4>Z Z component of vector angle from true to platform frame 
7 SVX X component of error in computer velocity 
8 6VY Y component of error in computer velocity 
9 svz Z component of error in computer velocity 
10 6h Error in vehicle altitude above reference ellipsoid 
11 6hL Error in lagged inertial altitude 
12 6S3 Error in vertical channel aiding state 
13 6S4 Error in vertical channel aiding state 
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Table A.2    93-state LN-93 INS Model, Category II: First Order Markov Process Error States 

State 
Number 

State 
Symbol 

Definition 

14 bxc X component of gyro correlated drift rate 

15 t>Yc Y component of gyro correlated drift rate 

16 bzc Z component of gyro correlated drift rate 

17 Vxc X component of accelerometer k velocity quantizer correlated noise 

18 Vyc 
Y component of accelerometer & velocity quantizer correlated noise 

19 Vzc Z component of accelerometer & velocity quantizer correlated noise 

20 6gx X component of gravity vector errors 

21 Sgy Y component of gravity vector errors 

22 6gz Z component of gravity vector errors 

23 8hs Total baro-altimeter correlated error 

24 bxt X component of gyro trend 

25 byt Y component of gyro trend 

26 bzt Z component of gyro trend 

27 VXc X component of accelerometer trend 

28 VYC Y component of accelerometer trend 

29 Vzc Z component of accelerometer trend 

30 bx X component of gyro drift rate repeatability 

31 by Y component of gyro drift rate repeatability 

32 bz Z component of gyro drift rate repeatability 

33 Jgx X component of gyro scale factor error 

34 Sgy Y component of gyro scale factor error 

35 Sgz Z component of gyro scale factor error 

36 Xl X gyro misalignment about Y axis 

37 X2 Y gyro misalignment about X axis 

38 X3 Z gyro misalignment about X axis 

39 V\ X gyro misalignment about Z axis 

40 Vl Y gyro misalignment about Z axis 

41 Vz Z gyro misalignment about Y axis 
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Table A.3    93-state LN-93 INS Model, Category III: Gyro Bias Error States 

State 
Number 

State 
Symbol 

Definition 

42 Dxxx X gyro scale factor non-linearity 

43 DYYY Y gyro scale factor non-linearity 

44 Dzzz Z gyro scale factor non-linearity 

45 SQbx X gyro scale factor asymmetry error 

46 SQby Y gyro scale factor asymmetry error 

47 SQbz Z gyro scale factor asymmetry error 

Table A.4    93-state LN-93 INS Model, Category IV: Accelerometer Bias Error States 

State 
Number 

State 
Symbol 

Definition 

48 Vbx X component of accelerometer bias repeatability 

49 Vbv Y component of accelerometer bias repeatability 

50 Vbz Z component of accelerometer bias repeatability 

51 ^Ai X component of accelerometer k, velocity quantizer scale factor error 

52 £>Ay Y component of accelerometer & velocity quantizer scale factor error 

53 SAZ Z component of accelerometer & velocity quantizer scale factor error 

54 SQAX X component of accelerometer & velocity quantizer scale factor asymmetry 

55 SQAy Y component of accelerometer & velocity quantizer scale factor asymmetry 

56 SQAZ Z component of accelerometer & velocity quantizer scale factor asymmetry 

57 fxx Coefficient of error proportional to square of measured acceleration 

58 IYY Coefficient of error proportional to square of measured acceleration 

59 fzz Coefficient of error proportional to square of measured acceleration 

60 fxY Coefficient of error proportional to products of acceleration 
along & orthogonal to accelerometer sensitive axis 

61 fxz Coefficient of error proportional to products of acceleration 
along & orthogonal to accelerometer sensitive axis 

62 /YX Coefficient of error proportional to products of acceleration 
along & orthogonal to accelerometer sensitive axis 

63 foz Coefficient of error proportional to products of acceleration 
along & orthogonal to accelerometer sensitive axis 

64 fzx Coefficient of error proportional to products of acceleration 
along & orthogonal to accelerometer sensitive axis 

65 fzY Coefficient of error proportional to products of acceleration 
along & orthogonal to accelerometer sensitive axis 

66 Pi X accelerometer misalignment about Z axis 

67 P2 Y accelerometer misalignment about Z axis 

68 P3 Z accelerometer misalignment about Y axis 

69 0"3 Z accelerometer misalignment about X axis 
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Table A.5    93-state LN-93 INS Model, Category V: Thermal Transient Error States 

State 
Number 

State 
Symbol 

Definition 

70 Vx« X component fo accelerometer bias thermal transient 

71 Vy„ Y component fo accelerometer bias thermal transient 

72 Vz„ Z component fo accelerometer bias thermal transient 

73 bxq X component of initial gyro drift rate bias thermal transient 
74 byq 

Y component of initial gyro drift rate bias thermal transient 
75 bzq 

Z component of initial gyro drift rate bias thermal transient 

Table A.6    93-state LN-93 INS Model, Category VI: Gyro Compliance Error States 

State 
Number 

State 
Symbol 

Definition 

76 FXYZ X gyro compl tance term 
77 FXYY X gyro compl lance term 
78 FXYX X gyro compl lance term 
79 FXZY X gyro compl lance term 
80 Fxzz X gyro compl lance term 
81 Fxzx X gyro compl lance term 
82 FYZX Y gyro compl lance term 
83 FYZZ Y gyro compl lance term 
84 FYZY Y gyro compl lance term 
85 FYXZ Y gyro compl lance term 
86 FYXX Y gyro compl lance term 
87 FYXY Y gyro compl iance term 
88 FZXY Z gyro compl: ance term 
89 Fzxx Z gyro compl] ance term 
90 Fzxz Z gyro compb ance term 
92 FZYX Z gyro compb ance term 
93 FzYY Z gyro compb ance term 
93 FZYZ Z gyro compliance term 
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Table A.7    39-state LN-93 INS Model, First 24 States 

State 
Number 

State 
Symbol 

Definition LN-93 
State 

1 sex X component of vector angle from true to computer frame 1 

2 seY Y component of vector angle from true to computer frame 2 

3 sez Z component of vector angle from true to computer frame 3 

4 <i>x X component of vector angle from true to platform frame 4 

5 <f>Y Y component of vector angle from true to platform frame 5 

6 <i>z Z component of vector angle from true to platform frame 6 

7 svx X component of error in computer velocity 7 

8 6VY Y component of error in computer velocity 8 

9 SVZ Z component of error in computer velocity 9 

10 6h Error in vehicle altitude above reference ellipsoid 10 

11 6hL Error in lagged inertial altitude 23 

14 6S3 Error in vertical channel aiding state 11 

15 SS4 Error in vertical channel aiding state 12 

16 SS4 Error in vertical channel aiding state 13 

17 SS4 Error in vertical channel aiding state 17 

18 6S4 Error in vertical channel aiding state 18 
19 6S4 Error in vertical channel aiding state 19 

20 6S4 Error in vertical channel aiding state 20 

21 SS4 Error in vertical channel aiding state 21 

22 SS4 Error in vertical channel aiding state 22 
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Table A.8    39-state LN-93 INS Model, Second 19 States 

State 
Number 

State 
Symbol 

Definition LN-93 
State 

23 sex X component of vector angle from true to computer frame 30 

24 seY Y component of vector angle from true to computer frame 31 
25 sez Z component of vector angle from true to computer frame 32 
26 <t>x X component of vector angle from true to platform frame 33 
27 <j>Y Y component of vector angle from true to platform frame 34 
28 4>Z Z component of vector angle from true to platform frame 35 
29 SVX X component of error in computer velocity 48 
30 SVY Y component of error in computer velocity 49 
31 6VZ Z component of error in computer velocity 50 
32 6h Error in vehicle altitude above reference ellipsoid 51 
33 ShL Error in lagged inertial altitude 52 

34 6S3 Error in vertical channel aiding state 53 
35 6S4 Error in vertical channel aiding state 54 
36 8S4 Error in vertical channel aiding state 55 
37 6S4 Error in vertical channel aiding state 56 
38 6S4 Error in vertical channel aiding state 66 
39 6S4 Error in vertical channel aiding state 67 
40 SS4 Error in vertical channel aiding state 68 
41 SS4 Error in vertical channel aiding state 69 
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Table A.9    11-state LN-93 INS Model 

State 
Number 

State 
Symbol 

Definition 

1 SQx X component of vector angle from true to computer frame 
2 seY Y component of vector angle from true to computer frame 
3 sez Z component of vector angle from true to computer frame 
4 4>x X component of vector angle from true to platform frame 
5 <t>Y Y component of vector angle from true to platform frame 
6 4>z Z component of vector angle from true to platform frame 
7 6VX X component of error in computer velocity 
8 6VY Y component of error in computer velocity 
9 6VZ Z component of error in computer velocity 
10 6h Error in vehicle altitude above reference ellipsoid 
11 ShL Error in lagged inertial altitude 
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Table A. 10    30-state GPS Error Model 

State 
Number 

State 
Symbol 

Definition 

1 ÖRucIk User clock bias 
2 öDucik User clock drift 
3 O-ttcloopl SV 1 code loop error 
4 SRtropl SV 1 tropospheric error 
5 ÖRionl SV 1 ionospheric 
6 SRclkl SV clock error 
7 6X1 SV X 1 component of position error 
8 SYi SV Y 1 component of position error 
9 6Zi SV Z 1 component of position error 
10 oRcloopI SV 2 code loop error 
11 ÖRtrop2 SV 2 tropospheric error 
12 ÖRion2 SV 2 ionospheric 
13 ÖRcIk2 SV 2 clock error 
14 sx2 SV X 2 component of position error 
15 6Y2 SV Y 2 component of position error 
16 6Z2 SV Z 2 component of position error 
17 oRdoopZ SV 3 code loop error 
18 8Rtrop3 SV 3 tropospheric error 
19 oRionZ SV 3 ionospheric 
20 ÖRrfk3 SV 3 clock error 
21 8X3 SV X 3 component of position error 
22 6Y3 SV Y 3 component of position error 
23 sz3 SV Z 3 component of position error 
24 Ö itcloopA SV 4 code loop error 
25 0 ltfrop4 SV 4 tropospheric error 
26 OitionA SV 4 ionospheric 
27 6Rclk4 SV 4 clock error 
28 6X4 SV X 4 component of position error 
29 SY4 SV Y 4 component of position error 
30 6Zi SV Z 4 component of position error 
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Table A.ll    22-state GPS Error Model 

State 
Number 

State 
Symbol 

Definition 

1 SRucik User clock bias 
2 <5Ajc/ifc User clock drift 
3 Ofi-cloopl SV 2 code loop error 
4 ÖRtropl SV 1 tropospheric error 
5 Oitionl SV 1 ionospheric 
6 SRclkl SV clock error 
7 6Xi SV 1 line-of-sight position error 
8 6Rcloop2 SV 2 code loop error 
9 SRtrop2 SV 2 tropospheric error 
10 8Rion2 SV 2 ionospheric 
11 ÖRclk2 SV 2 clock error 
12 6X2 SV 2 line-of-sight position error 
13 ÖRcloop3 SV 3 code loop error 
14 ÖRtrop3 SV 3 tropospheric error 
15 ÖRion3 SV 3 ionospheric 
16 6Rclk3 SV 3 clock error 
17 6X3 SV 3 line-of-sight position error 
18 oK-cloopi SV 4 code loop error 
19 bRtropi SV 4 tropospheric error 
20 0liion4 SV 4 ionospheric 
21 &Rclk4 SV 4 clock error 
22 6X4 SV 4 line-of-sight position error 
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Table A.12    10-state GPS Error Model 

State 
Number 

State 
Symbol 

Definition 

SRuclk User clock bias 
SDU elk User clock drift 
6R rngl Satellite 1 range error 

SR TngrateX Satellite 1 range-rate error 
SR rngl Satellite 2 range error 

6R rngrate2 Satellite 2 range-rate error 
6R, ■rng3 Satellite 3 range error 

SR, ■rngrateS Satellite 3 range-rate error 

SRrn 54 Satellite 4 range error 
10 6R. ■rngrateA Satellite 4 range-rate error 
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Table A.13    13-state Reduced Order Filter Model 

State 
Number 

State 
Symbol 

Definition 

1 sex X component of vector angle from true to computer frame 
2 <50y Y component of vector angle from true to computer frame 
3 sez Z component of vector angle from true to computer frame 
4 <f>x X component of vector angle from true to platform frame 
5 <t>Y Y component of vector angle from true to platform frame 
6 <i>z Z component of vector angle from true to platform frame 
7 SVX X component of error in computer velocity 
8 6VY Y component of error in computer velocity 
9 6VZ Z component of error in computer velocity 
10 6h Error in vehicle altitude above reference ellipsoid 
11 8hL Error in lagged inertial altitude 
12 &%uc\kb User clock bias 
13 SXucIkd User clock drift 

A-ll 



Appendix B.   Dynamics Matrices 

Chapter 3 describes the truth and filter model dynamics matrices. These matrices are 

broken down into submatrices: FFiiter,FiNSil,FINst3,andFGpst. The variables and their respec- 

tive units are described in the upcoming tables and defined in the LN-93 Error Budget (8). The 

structure of the dynamics matrices below correspond to the system truth model state definitions 

in Appendix A. 

Table B.l    Elements of the Dynamics Submatrix FFiiter 

Element Term Element Term 

(1,3) -Py (1,8) -CRY 

(2,3) Px (2,7) CRX 

(3,1) Py (3,2) -px 
(4,2) -toz (4,3) Vy 
(4,5) Uitz (4,6) Uity 

(4,8) —CRY (5,1) fi. 
(5,3) -fi* (5,4) -Uitz 

(5,6) -w* (5,7) —CRX 

(6,1) -Sly (6,2) fi* 
(6,4) Wity (6,5) —Uitx 

(7,1) -2Vyny (7,2) 2VZCRX 

(7,3) A2Vzny (7,5) -A, 
(7,6) Ay (7,7) -VZCRX 

(7,8) 2QZ (7,9) Py         4*&y 

(8,1) 2Vxny (8,2) -2Vxttx-2Vzttz 

(8,3) L vx «'y (8,4) Az 

(8,6) -A-x (8,7) -2fi, 
(8,8) —VZCRY (8,9) Px   i   A\LX 

(9,1) 2Vxnz (9,2) 2VyQz 

(9,3) y   y     AVX»'X (9,4) — Ay 

(9,5) Ax (9,7) Py + 2fiy + VXCRX 

(9,8) —px — 2£lx + CRY (9,10) 2g0/a 

(9,H) -*2 (10,9) 1 
(10,11) -Jbl (11,10) 1 

(11,11) -1 (12,13) lft2/sec 

B-l 



Table B.2    Elements of the Dynamics Submatrix FiNStl 

Element Term Element Term Element Term 

(4,23) Cn (4,24) C12(4,25) Cl3 

(9,26) Cn^ibx (9,27) CnUiby (9,28) C\3U>ibz 

(5,23) C21 (5,24) C22 (5,25) C23 

(5,26) Cil^ibx (5,27) C22^iby (5,28) C23uibz 

(6,23) C31 (6,24) C32 (6,25) C33 

(6,26) CziWibx (6,27) C32U>iby (6,28) C33U>ihz 

(7,16) Cn (7,17) C\2 (7,18) Cl3 

(7,19) 1 (7,29) Cn (7,30) C12 

(7,31) C31 (7,32) CnAf (7,33) C12A% 

(7,34) CisAf (7,35) Cn\Af\ (7,36) C12K- 
(7,37) Cis\Af\ (7,38) CnA» (7,39) -C12Af 
(7,40) CxzA» (7,41) C13A» (8,16) C21 

(8,17) C22 (8,18) C23 (8,20) 1 
(8,29) C21 (8,30) C22 (8,31) C23 

(8,32) C2iA% (8,33) C22Af (8,34) C23Af 
(8,35) C2i\A5\ (8,36) C22KI (8,37) C23\Af\ 
(8,38) C21A» (8,39) -C22AI (8,40) C23AZ 
(8,41) C23A» (9,14) -1 (9,15) k2 

(9,16) C31 (9,17) C32 (9,18) C33 

(9,21) 1 (9,22) k2 (9,29) C31 

(9,30) C32 (9,31) C33 (9,32) C31A» 

(9,33) Cz2A" (9,34) C33A? (9,35) C32|^| 

(9,36) CzMh (9,37) Cs3\A?\ (9,38) C31A» 
(9,39) -C33A» (9,40) C33A% (10,15) fci-1 

(14,11) k3 (14,15) -k3 (14,22) -*3 

(15,10) ki (15,11) —ki (15,22) fc4/600 
(15,15) k4- 1 
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Table B.3    Elements of the Dynamics Submatrix FiNst2 

Element Term Element Term Element Term 

(16,16) -ßvxc (17,17) ~ßvvc (18,18) -fa,e 

(19,19) Pdeltagx (20,20) Pdeltagy (21,21) Pdeltagz 

Table B.4    Elements of the Dynamics Submatrix FQPS 

Element Term Element Term Element Term 

(42,42) -1ft2/sec (43,43) -1/500 ft'2/sec (44,44) -l/1500/t'2/sec 

(49,49) -lft2/sec (50,50) -l/500ft2/sec (51,51) -l/1500/t2/sec 

(56,56) -lft2/sec (57,57) -l/500ft2/sec (58,58) -l/1500ft2/sec 

(63,63) -lft2/sec (64,64) -l/500ft2/sec (65,65) -1/1500 ft2 /sec 

B-3 



Appendix C.   Comparison of IS-State Filter Results Using INS States 23 and 11 

C.l    Overview 

As discussed in Chapter 3, state 11, the error in the lagged inertial altitude, produced 

better altitude estimates than state 23, the total correlated baro-altimeter error, when used in the 

13-state filter model. A complete description of the INS filter model states are given in Appendix 

A. The following discussion presents the background and research results leading to this filter model 

change. 

C.2   Background 

Past AFIT research has employed state 23 in the 13-state filter model (10, 18, 20, 22, 27). 

Initially, this researcher used the same filter model in computer simulation with satisfactory results. 

Figure C.l shows these results. After the the computer simulation research was completed, an actual 

hardware integration was conducted using real data with state 23 in the 13-state filter as described 

in Section 4.4.1. Tuning of the 13-state filter was found to be extremely difficult with extreme 

errors in the altitude channel. The EKF was extremely slow in recovering from the initial transient 

altitude error. Figure C.3 illustrates the altitude errors using real data in the EKF. Although many 

different tuning values were attempted, the altitude errors were on the order of hundreds of feet 

and the recovery from the transient was very slow. 

In an effort to correct the altitude error problem, state 11 was inserted into the model in 

place of state 23. State 11 was chosen on the basis of its position in the Litton LN-93 93-state error 

model, using the assumption that the vertical channel states were placed in the Litton model in 

the order of their significance (8). Research of past AFIT theses (10, 18, 20, 22, 27) did not reveal 

the reasoning for use of state 23. However, all of these theses did use the barometric altimeter as 

a sensor measurement, while modeling it in the filter as well. The results using state 11 in lieu of 

state 23 are shown in Figures C.2 and C.4. 

C.3   Results 

The computer simulation results did not indicate a difference in estimating altitude errors. 

These results are shown in Figures C.l and C.2. However, the results are easily seen when real 

data is used in a hardware integration. These results are shown in Figures C.3 and 4.4. 
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Figure C.l    Computer Simulation Altitude Errors Using Filter State 23 
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Figure C.2    Computer Simulation Altitude Errors Using Filter State 11 
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Figure C.3    Real Data Altitude Errors Using Filter State 23 
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Figure C.4    Real Data Altitude Errors Using Filter State 11 
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Appendix D.   The 69-State Filter Category I Computer Simulation Results 

The following plots represent the results of a 10-run Monte Carlo analysis using a 69-state 

filter. The tuning values were chosen without any knowledge of the actual hardware integration. 

Table D.l    Legend of Filter Tuning Plots 

Symbol Definition 

Solid Line Mean Error 
Dotted Line Mean Error ± True Sigma 
Dashed Line ± Filter Predicted Sigma 

Latitude Error (ft) 
100 

50 

0 

-50 

-100 

100 

\ 

           I                I - I I                 I 

\. ■ ■"'. • •.. - ■■-•••• — <...■■......  

/ 

I               I I I               I 

0 

-50 

-100 

0    200   400   600   800   1000  1200  1400  1600  1800 
Time (sec) 

Longitude Error (ft) 
1 1 1 

\ 

/ 
1 

1  - ■L-"- — : -"-'- '-"- '--■--'-. - - '-'- _ -'- '-■■-' _'H"_ —■ — 

1 1 1 

0 200 400 600        800        1000       1200       1400       1600       1800 
Time (sec) 

Figure D.l    Position Errors for the 69-State Filter Computer Simulation 
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Figure D.2    Altitude Errors for the 69-State Filter Computer Simulation 
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Appendix E.   The IS-State Filter Category I Computer Simulation Results 

The following plots represent the results of a 10-run Monte Carlo analysis using a 13-state 

filter. 

Table E.l    Legend of Filter Tuning Plots 

Symbol Definition 

Solid Line Mean Error 
Dotted Line Mean Error ± True Sigma 
Dashed Line ± Filter Predicted Sigma 
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Appendix F.   The 69-State Filter Category II Computer Simulation Results 

The following plots represent the results of a 10-run Monte Carlo analysis using a 69-state 

filter. The dynamic driving noise strengths were taken from the values used to tune the filter in 

the GPS/INS hardware integration. 

Table F.l    Legend of Filter Tuning Plots 

Symbol Definition 

Solid Line Mean Error 
Dotted Line Mean Error ± True Sigma 
Dashed Line ± Filter Predicted Sigma 
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Appendix G.   The 13-State Filter Category II Computer Simulation Results 

The following plots represent the results of a 10-run Monte Carlo analysis using a 13-state 

filter and the dynamic driving noise strength values from the GPS/INS hardware integration. 

Table G.l    Legend of Filter Tuning Plots 

Symbol Definition 

Solid Line Mean Error 
Dotted Line Mean Error ± True Sigma 
Dashed Line ± Filter Predicted Sigma 
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Appendix H.   INS Plots 

The following plots represent a three hour data set collected from the 1553 data bus for the 

LN-94. As discussed in Chapter 4, the LN-94 has not had any calibration, alignment or preventive 

maintenance performed on it in several years; therefore, the large drift rate was expected. This 

data was collected over a three hour period and was used as input for the GPS/INS integration 

research. 
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Appendix I.   Residuals 

1.1    Overview 

Section 4.4.3 described the sudden bias shifts which occured in the GPS receivers during 

data collection. The research could not determine if this was a problem with the receiver clocks or 

an intentional correction by the GPS receiver to maintain some relation to the satellite time. The 

bias shifts did not appear to be on any specific interval, but rather random in nature. In any event, 

the phenomena must be accounted for when using actual hardware in a GPS/INS integration. This 

appendix describes the bias shifts which occured and shows the results. 

Recall from Section 1.2.3, the primary component of error in the actual range from the 

satellite to the user is the difference between the GPS and receiver times. A very slight difference 

in time can create a very huge error, since the difference is multiplied by the speed of light to 

provide a distance error. During data collection, the GPS receivers occasionally induced a bias 

shift at random intervals. Below is an excerpt from a data file showing the bias shift. Each column 

represents pseudoranges from each of seven satellites. The starred rows indicate where the clock 

bias shifted. 

Satellite ID # 

19 22 27 29 18 28 31 

1.0e+07 * 

5.4049 5.9398 6.2381 5.2932 5.0767 5 1417 5.0822 

5.3977 5.9392 6.2296 5.2920 5.0734 5 1379 5.0755 

5.3904 5.9385 6.2212 5.2908 5.0702 5 1341 5.0688 

5.3831 5.9379 6.2127 5.2896 5.0669 5 1303 5.0621 

5.3759 5.9373 6.2043 5.2884 5.0637 5 1265 5.0554 

5.3686 5.9366 6.1958 5.2872 5.0605 5 1227 5.0488 

5.3614 5.9360 6.1874 5.2861 5.0573 5 1190 5.0421 

5.3541 5.9353 6.1789 5.2849 5.0541 5 1152 5.0355 

5.3469 5.9347 6.1705 5.2838 5.0510 5 1115 5.0289 
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This pseudorange shift was approximately 18,500,000 feet. The shift could not be detected 

in the position plots as shown in Figure 1.1; however, the residuals clearly indicate the addition of 

the bias in Figure 1.2. 
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Appendix J.   MATLAB Multimode Simulation for Optimal Filter Evaluation 

(MATSOFE) 

J.l    Overview 

In an effort to create a more user-friendly and productive simulation tool, the Navigation, 

Guidance and Control Section at AFIT has developed a collection of m-files known as MATSOFE 

(7). This Appendix will describe the methodology, m-file structure, differences from MSOFE (3), 

and the advantages/disadvantages of MATSOFE. 

J.2   Background 

The name MATSOFE was chosen to reflect the influence MSOFE (3) had upon its 

development. The MATSOFE tool was created using MSOFE as a basic guideline; wherever 

possible the Fortran code was converted directly into the MATLAB language. Without the excellent 

notation in MSOFE, the relatively quick development of MATSOFE would not have been possible. 

MSOFE has been created as a general tool for solving virtually any type of Kaiman filtering 

problem. Although MATSOFE may eventually grow to encompass all types of problems, to date 

only the MSOFE manual's orbit and GPS/INS integration problems have been evaluated using the 

MATLAB tool /citemsofe, matsofe. 

J.3   MATSOFE Structure 

MATLAB is an interactive system and programming language for general scientific and 

technical computation /citematlab. MATSOFE has been written as a set of MATLAB scripts and 

functions using m-files /citematsofe. The m-file is a feature of MATLAB used in the MATSOFE 

tool, allowing the user to execute sequences of commands that are stored in files with names that 

have an extension of .m, as in matekf2.m. 

MATSOFE is a program, similar to MSOFE, which allows the user to design integrated 

systems via Kaiman filtering techniques and to evaluate their performance. MATSOFE permits 

the designer to implement his own truth and filter models. The remainder of this section will present 

the flow of the MATSOFE algorithm and indicate differences from its MSOFE counterpart. The 

hierarchical structure of MATSOFE is depicted in Figure J.l.   This figure gives a depiction of 
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clear variables 

setup2.m 

while 

irun < runs 

irun = irun + 1 

NO endsim.m 

OUTPUT 

-^> Print Plots 

~^ Save to File 

YES 

initrun2.m 

simrun2.m 

endrun2.m 

Figure J.l    Block Diagram of MATSOFE Hierarchical Structure 

MATSOFE in its most general form with all of its top level subroutines. 

J.4    Setting Up MATSOFE 

This section describes the setup of MATSOFE for a GPS/INS integration simulation 

run. In order to setup MATSOFE initially for a new problem, the following m-files must be 

changed: setup2.m, sizes.m, initcond.m, newprop.m, newmeas.m, ffform2.m, fsform2.m, endrun.m, 

and endsim.m. These m-files are described in Section J.6. The dynamics models are input into 

newprop.m, and the measurement equations are entered into newmeas.m. The initial conditions 

are found in initcond.m, sizes.m, and setup2.m. The remaining m-files contain the basic Kaiman 

filtering equations and in general do not need alteration. 

A comment on initial conditions is required at this point. MSOFE uses two different modes in 

establishing initial conditions (3). Mode 1 assumes that the run starts when the filter is initialized, 

and the filter initial state is set to some fixed value. In this case, the following initial covariance 
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and state values are assigned: 

PM(*i) = Psi (J-l) 

P/.ft) = 0 (J.2) 

P//(*0 = 0 (J-3) 

x,(*,-) = P>s (J.4) 

*/(*.■) = */.■ (J-5) 

where t, is the initial time of each run and us is a zero-mean, unit-variance random vector (3). 

Thus, a randomized initial state condition is used, according to statistics provided by the user. 

Mode 2 assumes that the simulation starts at some point well after the filter has started 

operating, so that the filter state estimate is a fully developed random process. In this mode the 

filter "initial state" is set equal to the corresponding system state A/Sxs plus an additional random 

error, ej. The following equations describe Mode 2: 

P„(*i) = Psi (J.6) 

Pft(ti) = A/f P„- (J.7) 

Pff(U) = A/sPs;Aj5 + Pei (J.8) 

x5(*0 = P>s (J.9) 
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x/(*0 = A/.x.(ti) + P.>/ (J-10) 

where A/s represents the mapping matrix for correlation between the filter and truth models. For 

the GPS/INS problem, MSOFE used Mode 2. The same random initialization process was used by 

MATSOFE. MATSOFE is capable of operating under either mode just as MSOFE. At this time 

there is no switch in initcond.m to establish a specific initial conditions mode; the designer must 

determine which mode is appropriate for his needs and utilize it. 

J.5   Running MATSOFE 

The MATSOFE extended Kaiman filtering algorithm begins with the command matekf2. 

Once this command is entered no other action is required of the user. The time consuming portion 

of the simulation is initially setting up the models. The algorithm progresses from the top-level 

script file, matekf2.m and first establishes the simulation controls in setup2.m. This is the first and 

one of the most important actions during the entire simulation. The subroutine, setup2.m, contains 

the initial and final run times, the number of runs, the number of measurements and the respective 

measurement rates, output rates, constants, noise power spectral density values, and initial values. 

The algorithm then steps to the subroutine initrun2.m. This m-file sets the sizes for all MAT- 

SOFE vector arguments; establishes the initial conditions for Pf, Pei, Ps, xf, and xs; computes the 

initial trajectory values; and provides the initial values of the dynamics matrices. The subroutine 

usrout.m is also called to record the initial conditions of all variables of interest. 

The trajectory program, mcirc2.m, computes the kinematic quantities for a vehicle traveling 

along a minor circle path. The trajectory variables are provided for use in the gps orbit routine, 

the observation matrices, and the dynamics models. The subroutine cannot fly a meridian flight 

path. If a trajectory other than a minor circle is required, then the data file must be input from 

PROFGEN or some other flight profile generator. To date, only the trajectory generator mcircle 

from MSOFE has been included into the MATSOFE tool. The subroutine gps.m computes the 

earth-referenced position and velocity vectors of specified GPS satellites in the user's geographic 

frame coordinates. The drawback to this algorithm is that all GPS satellite orbits pass directly over 

the user's initial position. The satellite starting positions can be selected to provide a reasonable 

J-4 



GPS constellation over a period of a few hours. MATSOFE has included the code to calculate the 

different figures of merit for the Dilution of Precision: GDOP, PDOP, HDOP, and TDOP (17). 

The algorithm then moves to simrun2.m which conducts a complete simulation. This script 

is the heart of the extended Kaiman filter processing. MATSOFE uses the extended Kaiman filter 

equations to provide an estimate of user position errors (15). The filter-computed covariance is 

propagated forward in time using the discrete version of the Riccati Equation (2.17). 

3.6   M-File Description 

The following discussion describes each m-file used in MATSOFE and its sequence in the 

program. This summary is focused upon the GPS/INS integration problem of Chapter IV in the 

MSOFE Users' Manual (3). Where applicable, each m-file is related to its MSOFE counterpart for 

additional clarity. The flow graph of the program is shown in Figure J.l. The m-files which change 

for each specific problem are indicated by an asterisk. 

1. matek£2.m The m-file, matekf2.m (matekf-MATLAB extended Kaiman filter), is cur- 

rently the top level of the MATSOFE program. When the models and initial conditions have 

been input for the user's specific problem, the command matekf2 is entered to begin program 

execution. The m-file proceeds as follows: (1) clear all variables, (2) call setup2.m, (3) set 

irun=l, (4) call initrun2.m, (5) call simrun2.m, (6) call endrun. Steps 4-6 are followed until 

the desired number of runs are completed. At the termination of the program, the data is 

processed for plotting using endsim.m. 

2. setup2.m* The m-file, setup2.m, allows the user to declare all the important simulation 

controls for the problem in a single location. Constants, the initial and final simulation 

times, number of runs, number of measurements, measurement update rates, output rates, 

and measurement matrix update rates are established in setup2.m. This m-file is only called 

once at the beginning of the first Monte Carlo run; only variables that do not change between 

runs should be established in this m-file. The m-file, setup2.m, is analogous to MSOFEJN 

Group 1 and usofe.for subroutine UBLOCK. 

3. initrun2.m The m-file, initrun2.m, initializes the parameters for each run. These vari- 

ables are reset before each run. In initrun2.m, the time is set to the initial time and the first 
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measurement update, synchronous output, and propagation update is set.  The m-file then 

calls out sizes.m, initcond.m, trajectory.m, newprop.m, and usrout.m. 

4. sizes.m* This m-file establishes the model sizes for the entire simulation. This m-file is 

similar to the USOFE file SIZES. 

5. initcond.m* The m-file, initcond.m, sets the initial conditions for a single Monte Carlo 

run. This m-file is analogous to MSOFEJN Groups IV and V. 

6. trajectory.m* The m-file, trajectory.m, is the top level m-file for calculating satellite 

and vehicle trajectories. The m-file calls out mcirc2.m and gps.m. This m-file is similar to 

TRAJSYS in USOFE. 

7. mcirc2.m* The m-file, mcirc2.m, computes the vehicle position at each increment in 

time. This m-file is similar to MCIRCLE in usofe.for. 

Note: This routine is only for implementation of the GPS/INS Integration Problem of Chap- 

ter 4 of (3). 

8. gps.m* The m-file, gps.m, calculates the earth-referenced position and velocity vectors 

of specified gps satellites in the user's geographic frame coordinates. This algorithm as- 

sumes earth-fixed circular orbits passing directly over the user's initial position. The m-file, 

newmeas.m, calculates all of the Dilutions of Precision, so that the system designer can set 

up the GPS initial conditions to employ whatever GDOP is necessary for his problem. This 

m-file is similar to GPSSAT in usofe.for. 

9. newprop.m* The m-file, newprop.m, establishes the Fs, Ff, qs, and qf matrices [see 

Equation (2.11)]. The EKF theory is given in Chapter 2.The m-file, newprop.m, is called 

once during initrun.m to set the variables, and then called again before each propagation to 

reset the time-varying components. The MSOFE files ERRDYN, FCQSYS, and FCQFIL are 

similar to this m-file. 

10. usrout.m* The m-file, usrout.m, is the primary subroutine for data storage throughout a 

single simulation run. This program is called from various points in the algorithm and allows 

the user to save variables stored in this subroutine to be written out to a file. This MATSOFE 

subroutine is designed to overwrite itself to save space; therefore, there is no generic CTOM 

or DTOM as in MSOFE for generating output files. 
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11. simrun2.m The m-file, simrun2.m, is the control for a single run of the extended Kaiman 

filter program. 

12. propagate.m The m-file, propagate.m, controls the propagation cycle for the extended 

Kaiman filter. This m-file is called anytime there is a need to move forward in time. The 

m-file calls out trajectory.m, newprop.m, fsprop2.m, ffprop2.m, and Pfprop.m. 

13. fsprop2.m The m-file, fsprop2.m, propagates the system truth model vector, xs, to the 

next sample time [see Equation (2.16)]. 

14. fsform2.m* The m-file, fsform2.m, establishes the equation to be propagated forward in 

time. 

15. qdform.m The m-file, qdform.m, takes the current value of qs and the Phis matrices 

and forms the equivalent discrete time measurement noise. 

16. ffprop2.m The m-file, ffprop2.m, propagates the xf vector to the next sample time [see 

Equation (2.16)]. 

17. ffform2.m* The m-file, ffform2.rn, establishes the equation to be propagated forward in 

time. 

18. Pfprop.m The m-file, Pfprop.m, propagates the filter covariance, Pf from time to tnext 

[see Equation (2.17)]. Unlike the previous propagations (xf and xs) of the state covariances, 

this subroutine propagates the covariance using a discrete-time evaluation rather than the 

integration routines used in ffprop2.m and fsprop2.m. 

19. meas.m The m-file, meas.m, determines the complete measurement update cycle. This 

m-file calls out nummeas.m, premeas.m, calmeas.m, and postmeas.m. 

20. nummeas.m The m-file, nummeas.m, calculates how many measurements take place at 

the current measurement time depending on the relative sampling rates of the measurements. 

21. premeas.m The m-file, premeas.m, calls out newmeas.m and writes the necessary values 

of the measurement matrix to usrout.m. 

22. newmeas.m* The m-file, newmeas.m, forms the new matrices needed to create the 

new zs truth model measurement, and the new xf and Pf. In order to form the necessary 

measurement matrices Hs, hs, Hf, hf, Rs, and Rf [see Equations (2.11), (2.13), (2.14), (3.19) 

and (3.20)] are computed in this m-file. 
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23. calmeas.m The m-file, calmeas.m, calculates the measurement updates for the mea- 

surements that require updating as determined by nummeas.m [see Equations (2.21), (2.22), 

(2.23)]. The index values for the measurements to be updated are stored in wmeas, a vector 

of meas.m indices. 

24. postmeas.m The m-file, postmeas.m, holds all the events that occur at the time moment 

directly after a measurement update has occurred; all events that take place specifically at 

time ti-plus are called from this subroutine. 

25. endrun.m The m-file, endrun.m, is an output file called at at the end of each run, which 

allows the user to consolidate the data from each run. 

26. endsim.m* The m-file, endsim.m, is used to store the computed statistical values of the 

variables of interests. 

27. output.m* The m-file, output.m, is used to construct the desired plots of the stored 

data. 

When real data is used as input files, several changes are required. Since the truth models 

are replaced by actual system outputs, the Fs and Qs matrices are no longer needed. These models 

are deleted from the m-files in newprop.m. Also the fsprop.m and fsform.m m-files are no longer 

necessary to propagate the system truth model. 

Other m-files no longer needed are endrun.m and endsim.m. With real data there is only one 

run per data set and no processing of output variables for statisitics is required; only the residuals, 

position, and velocity outputs are collected in usrout.m for plotting. Another m-file no longer 

necessary is the mcirc2.m file, which provides the flight trajectory information. All of this data is 

contained in the real data files. 

Several m-files are added to the routine to allow the use of real data. First of all, two INS 

routines are added for input of the LN-94 information. These two files are insdata.m and ltest. 

The file, ltest, is strictly a data file collected off of the 1553 data bus and it is read into the desired 

MATLAB format with the m-file insdata.m. The m-file, insdata.m, converts the binary format of 

the LN-94 to a MATLAB readable file. 

The GPS data is processed for use in the EKF with several files. First, the data is collected into 

a data file from the XR-4PC or XR-5PC. The data is then converted into files for use in MATSOFE 
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with the master m-file navls.m. The data is read into large vectors using the m-file, convert.m, which 

is called out from navls.m. The function, process.m, takes the raw data and calculates satellite 

position in ECEF coordinates and applies the necessary corrections to the pseudo-ranges. Several 

actions then take place in navls.m. A position is calculated using the batch least squares method. 

The GDOP is computed and the number of satellites is checked to determine if a bad measurement 

has been received. Bad measurements are identified by a consistency check which determines the 

error between the actual range and pseudorange. If a bad measurement is identified, that satellite 

is not used in the navigation solution computations. The ECEF coordinates are transformed to 

Litton ECEF coordinates and the values converted from metric to English units. When changing 

models for the various GPS/INS runs, the files newprop.m, newmeas.m, initcond.m, setup2.m, and 

sizes.m were the only ones which required change. 
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